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Abstract Advances in biological and medical technologies have been providing us explosive vol-

umes of biological and physiological data, such as medical images, electroencephalography, geno-

mic and protein sequences. Learning from these data facilitates the understanding of human

health and disease. Developed from artificial neural networks, deep learning-based algorithms show

great promise in extracting features and learning patterns from complex data. The aim of this paper

is to provide an overview of deep learning techniques and some of the state-of-the-art applications

in the biomedical field. We first introduce the development of artificial neural network and deep

learning. We then describe two main components of deep learning, i.e., deep learning architectures

and model optimization. Subsequently, some examples are demonstrated for deep learning
nces and
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applications, including medical image classification, genomic sequence analysis, as well as protein

structure classification and prediction. Finally, we offer our perspectives for the future directions

in the field of deep learning.
Introduction

Deep learning is a recent and fast-growing field of machine
learning. It attempts to model abstraction from large-scale data

by employing multi-layered deep neural networks (DNNs),
thus making sense of data such as images, sounds, and texts
[1]. Deep learning in general has two properties: (1) multiple
layers of nonlinear processing units, and (2) supervised or unsu-

pervised learning of feature presentations on each layer [1]. The
early framework for deep learning was built on artificial neural
networks (ANNs) in the 1980s [2], while the real impact of deep

learning became apparent in 2006 [3,4]. Since then, deep learn-
ing has been applied to a wide range of fields, including auto-
matic speech recognition, image recognition, natural language

processing, drug discovery, and bioinformatics [5–7].
The past decades have witnessed a massive growth in

biomedical data, such as genomic sequences, protein struc-

tures, and medical images, due to the advances of high-
throughput technologies. This deluge of biomedical big data
necessitates effective and efficient computational tools to store,
analyze, and interpret such data [5,8]. Deep learning-based

algorithmic frameworks shed light on these challenging prob-
lems. The aim of this paper is to provide the bioinformatics
and biomedical informatics community an overview of deep

learning techniques and some of the state-of-the-art applica-
tions of deep learning in the biomedical field. We hope this
paper will provide readers an overview of deep learning, and

how it can be used for analyzing biomedical data.

The development of ANNs

As a basis for deep learning, ANNs were inspired by biological
processes in the 1960s, when it was discovered that different
visual cortex cells were activated when cats visualized different
objects [9,10]. These studies illustrated that there were connec-

tions between the eyes and the cells of the visual cortex, and
that the information was processed layer by layer in the visual
system. ANNs mimicked the perception of objects by connect-

ing artificial neurons within layers that could extract the fea-
tures of objects [11–16]. However, ANN research stagnated
after the 1960s, due to the low capability resulting from its

shallow structures and the limited computational capacity of
computers at that time [17].

Thanks to the improvement in computer capabilities and
methodologies [18], ANNs with efficient backpropagation

(BP) facilitated studies on pattern recognition [19–23]. In a
neural network with BP, classifications were first processed
by the ANN model, and weights were then modified by evalu-

ating the difference between the predicted and the true class
labels. Although BP helped to minimize errors through gradi-
ent descent, it seemed to work only for certain types of ANNs

[24]. Through improving the steeper gradients with BP, several
learning methods were proposed, such as momentum [25],
adaptive learning rate [26–28], least-squares methods [29,30],

quasi-Newton methods [31–34], and conjugate gradient (CG)
[35,36]. However, due to the complexity of ANNs, other sim-

ple machine learning algorithms, such as support vector
machines (SVMs) [37], random forest [38,39], and k-nearest
neighbors algorithms (k-NN) [40], gradually overtook ANNs

in popularity (Figure 1).

The development of deep learning

An ANN with more hidden layers offers much higher capacity
for feature extraction [4]. However, an ANN often converges
to the local optimum, or encounters gradient diffusion when
it contains deep and complex structures [41]. A gradient prop-

agated backwards rapidly diminishes in magnitude along the
layers, resulting in slight modification to the weights in the lay-
ers near the input (http://deeplearning.stanford.edu/wiki/

index.php/UFLDL_Tutorial) [42]. Subsequently, a layer-wise
pre-training deep auto-encoder (AE) network was proposed,
bringing ANNs to a new stage of development [3,4,43–45]

(Figure 1). In this network, each layer is trained by minimizing
the discrepancy between the original and the reconstructed
data [4]. The layer-wise pre-training breaks the barrier of gra-
dient diffusion [4], and also results in a better choice of weights

for deep neural networks (DNNs), thereby preventing the
reconstructed data from reaching a local optimum where the
local optimum is usually caused by the random selection of ini-

tial weights. In addition, the employment of graphic processing
units (GPUs) also renews the interest of researchers in deep
learning [46,47].

With the focus of more attention and efforts, deep learning
has burgeoned in recent years and has been applied broadly in
industry. For instance, deep belief networks (DBNs) and

stacks of restricted Boltzmann machines (RBMs) [3,48,49]
have been applied in speech and image recognition [3,45,50]
and natural language processing [51]. Proposed to better mim-
ick animals’ perceptions of objects [52], convolutional neural

networks (CNN) have been widely applied in image recogni-
tion [53–55], image segmentation [56], video recognition
[57,58], and natural language processing [59]. Recurrent neural

networks (RNNs) are another class of ANNs that exhibit
dynamic behavior, with artificial neurons that are associated
with time steps [25,60,61]. RNNs have become the primary

tool for handling sequential data [62], and have been applied
in natural language processing [63] and handwriting recogni-
tion [64]. Later on, variants of AEs, including sparse AEs,
stacked AEs (SAEs), and de-noising AEs, have also gained

popularity in pre-training deep networks [49,65–67].
Although applications of deep learning have been primarily

focused on image recognition, video and sound analyses, as

well as natural language processing, it also opens doors in life
sciences, which will be discussed in detail in the next sections.

Brief description of deep learning

Although the underlying assumptions and theories are differ-
ent, the basic idea and processes for feature extraction in most

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
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Figure 1 Timeline of the development of deep learning and commonly-used machine learning algorithms

The development of deep learning and neural networks is shown in the top panel, and several commonly-used machine learning

algorithms are shown in the bottom panel. NN, neural network; BP, backpropagation; DBN, deep belief network; SVM, support vec-

tor machine; AE: auto-encoder; VAE: variational AE; GAN: generative adversarial network; WGAN: Wasserstein GAN.
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deep NN (DNN) architectures are similar. In the forward pass,
the network is activated by an input to the first layer, which
then spreads the activation to the final layer along the weighted
connections, and generates the prediction or reconstruction

results. In the backward pass, the weights of connections are
tuned by minimizing the difference between the predicted
and the real data.

Basic concepts

Activation functions

Activation functions form the non-linear layers in all deep
learning frameworks; and their combinations with other layers

are used to simulate the non-linear transformation from the
input to the output [62]. Therefore, better feature extraction
can be achieved by selecting appropriate activation functions
[7,68,69]. Here, we introduce several commonly-used activa-

tion functions, represented by g.

� Sigmoid function: gðaÞ ¼ 1
1þe�a, where a is the input from the

front layer. A sigmoid function transforms variables to val-
ues ranging from 0 to 1 and is commonly used to produce a

Bernoulli distribution. For example:

~g ¼ 0 if gðaÞ 6 0:5

1 if gðaÞ > 0:5

�
;

� Hyperbolic tangent: gðaÞ ¼ tan hðaÞ ¼ ea�e�a

eaþe�a. Here, the

derivative of g is calculated as g0 ¼ 1� g2, making it easy
to work with in BP algorithms.
� Softmax: gðaÞ ¼ eaiP
j
eaj
. The softmax output, which an be

considered as a probability distribution over the categories,
is commonly used in the final layer.

� Rectified linear unit (ReLU): gðaÞ ¼ maxð0; aÞ. This activa-
tion function and its variants show superior performance in
many cases and are the most popular activation function in
deep learning so far [68,70–72]. ReLU can also solve the

gradient diffusion problem [73,74].
� Softplus: gðaÞ ¼ logð1þ eaÞ. This is one of the variants of
ReLU, representing a smooth approximation of ReLU (in

this article, the log always represents the natural logarithm).
� Absolute value rectification: gðaÞ ¼ jaj. This function is use-
ful when the pooling layer takes the average value in CNNs

[75], thus preventing otherwise the negative features and the
positive features from diminishing.

� Maxout: giðxÞ ¼ max
i

ðbi þ wi � xÞ. The weight matrix in this

function is a three-dimensional array, where the third array

corresponds to the connection of the neighboring layers
[76].

Optimization objective

An optimization objective is often composed of a loss function
and a regularization term. The loss function measures the dis-

crepancy between the output of the network depend on model
parameters (h) fðxjhÞ and the expected result y, e.g., the true
class labels in classification tasks, or the true level in prediction

tasks. However, a good learning algorithm performs well not
only on the training data, but also on the test data. A collec-
tion of strategies designed to reduce the test error is called reg-
ularization [62]. Some regularization terms apply penalties to
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parameters to prevent overly complex models. Here, we briefly
introduce the commonly used loss function LðfðxjhÞ; yÞ and
regularization term XðhÞ. The optimization objective is usually

defined as:

~LðX; y; hÞ ¼ LðfðxjhÞ; yÞ þ aXðhÞ ð1Þ
where a is a balance of these two components, and in practice,
the loss function is usually calculated across randomly-
sampled training samples rather than the data-generating dis-

tribution, since the latter is unknown.

Loss function

Most DNNs use cross entropy between the training data and
the model distribution as the loss function. The most com-
monly used form of cross entropy is the negative conditional

log-likelihood: LðfðxjhÞ; yÞ ¼ � logPðf ¼ yjx; hÞ. This is a col-
lection of loss functions corresponding to the distribution of y
given the value of input variable x. Here, we introduce several

commonly used loss functions that follow this pattern:
Suppose y is continuous and has a Gaussian distribution

over a given variable x. The loss function would be:

LðfðxjhÞ; yÞ ¼ � log

ffiffiffiffiffiffiffiffiffiffi
1

2pr2

r
exp � 1

2r2
ðy� fÞ2

� �" #

¼ 1

2r2
ðy� fÞ2 þ 1

2
logð2pr2Þ ð2Þ

Which is equivalently described as the squared error. The

squared error was the most commonly used loss function in
the 1980s [62]. However, it often tends to penalize outliers
excessively, leading to slower convergence rates [77].

If y follows the Bernoulli distribution, then the loss func-
tion will be:

LðfðxjhÞ; yÞ ¼ �y log fðxjhÞ � ð1� yÞ logð1� fðxjhÞÞ ð3Þ
When y is discrete and has only two values, for instance,

y 2 f1; 2; . . . ; kg, we can take the softmax value (see

commonly-used activation functions) as the probability over
the categories. Then the loss function will be:

LðfðxjhÞ; yÞ ¼ � log
eayP
je

aj

 !
¼ �ay þ log

X
j

eaj

 !
ð4Þ

Regularization term

L2 parameter regularization is the most common form of reg-
ularization term and contributes to the convexity of the opti-
mization objective, leading to an easy solution for the

minimum using the Hessian matrix [78,79]. L2 parameter reg-
ularization can be defined as

XðhÞ ¼ 1

2
kxk2 ð5Þ

where X represents weights of connecting units in the network

(the same as in the following context).

Compared to L2 parameter regularization, L1 parameter

regularization results in a sparser solution of x and tends to

learn small groups of features. L1 parameter regularization
can be defined as

XðhÞ ¼ kxk1 ¼
X
i

jxij ð6Þ
Frobenius parameter regularization is induced by the inner
product and is block decomposable, therefore it is easier to
compute [80,81]. Frobenius parameter regularization can be

defined as

xðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

X
j

jxijj2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXrankðxÞ
i¼1

r2
i

vuut ð7Þ

where ri is the i-th largest singular value. Frobenius parameter

regularization has a function similar to nuclear norm in terms
of regularization.

Nuclear norm has been widely used as regularization in

recent years [82–84]. Nuclear norm regularization measures
the sum of the singular values of x and can be defined as

XðhÞ ¼ kxk� ¼
XrankðxÞ
i¼1

ri ð8Þ

Optimization methods

A learning task is transformed to an optimization problem, to
achieve the minima of the objective function by selecting
appropriate hyperparameters. The basic processes of different

optimization methods are similar. First, the output f ¼ fðxjh0Þ
and the optimization objective ~L of the model are computed
using the initial parameters h0. The network parameters h
are then tuned to decrease the objective function value from

the final layer to the first layer [18]. This process is repeated
until the proper model and a small fit error, i.e., loss function
value, are obtained (http://deeplearning.stanford.edu/wiki/

index.php/UFLDL_Tutorial).
However, different optimization methods have different

advantages and disadvantages on different architectures and
loss functions [62,85]. Stochastic gradient descent (SGD) and

its variants are the most-used methods, which update the
parameters by a gap corresponding to the Jacobian matrix.
The computation time per update does not grow too much

even with a large training set [86–88]. AdaGrad updates
parameters according to the accumulation of squared gradi-
ents, which can converge rapidly when applied to convex func-

tions, but performs worse in certain models [62]. RMSProp, an
AdaGrad algorithm, has been an effective and popular method
for parameter optimization. Another type of algorithm makes

use of second order derivatives to improve optimization. For
instance, limited-memory Broyden–Fletcher–Goldfarb–Shann
o algorithm (BFGS) is one type of quasi-Newton method,
which iteratively refines the approximation of the inverse of

the Hessian matrix and avoids storing the matrix. BFGS is
good at dealing with low dimensionality problems, particularly
for convolutional models [85]. In addition, conjugate gradient

combines conjugacy and gradient descent in the update direc-
tion decision for parameters, efficiently avoiding the calcula-
tion of the inverse Hessian [4,35,36], while contrastive

divergence is usually used in RBM model [89–91]. With
the help of a GPU [47], many algorithms can be accelerated
significantly [85].

The proper architecture and objective function should be
selected according to data considered. As a type of machine
learning, deep learning can also encounter ‘‘overfitting,” that
is, low error on training data but high error on test data. In

addition to the regularization terms, other methods for regu-
larization are also important for reducing test error. Adding

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial


Cao C et al /Deep Learning for Biomedicine 21
noise to the input or to the weights are efficient regularization
strategies [41,92], as in the case of a denoising AE [93].
Stopping the optimization early by setting an iteration number

is another commonly used strategy to prevent the network
from overfitting [62]. Parameter sharing, just like in CNN,
can also contribute to regularization [94]. Dropout can force

units to independently evolve, and randomly remove portions
of units in ANN on each iteration, and can therefore achieve
better results with inexpensive computation [73,95,96].

Deep learning architectures

AEs

Different from ordinary ANNs, AEs extract features from
unlabeled data and set target values to be equal to the inputs

[4,49,97]. Given the input vector fxð1Þ; xð2Þ; xð3Þ; . . .g; xðiÞ 2 Rn,

the AE tries to learn the model:

hw;bðxÞ ¼ gðWxþ bÞ � x ð9Þ
where W and b are the parameters of the model, g is the acti-

vation function (same definition applied in the following con-
text), and hW;b represents the hidden units. When the number

of hidden units, which represents the dimension of features,
is smaller than the input dimension, the AE performs a reduc-
tion of data dimensionality similar to principal component

analysis [98]. Besides pattern recognition, an AE with a classi-
fier in the final layer can perform classification tasks as well.

RBMs and DBNs

RBMs are generative graphical models that aim to learn the
distribution of training data. Since we do not know which dis-
tribution the data obeys, we cannot directly compute model

parameters using the maximum likelihood principle. Boltz-
mann machines (BMs) use an energy function to generate
the probability distribution (see Equations (12) and (13)
below), and then optimize parameters until the model learns

the true distribution of the data. The original BMs have not
been demonstrated to be useful for practical problems, while
RBMs are commonly used in deep learning.

RBMs restrict the BMs to a bipartite graph, i.e., there are
no connections within visible units m ¼ x or hidden units �h.
This restriction ensures the conditional independency of hid-

den units and visible units [91], i.e.,

PðhjvÞ ¼ PipðhijvÞ
PðvjhÞ ¼ PjpðvjjhÞ

ð10Þ

Furthermore, most RBMs rely on the assumption that all
units in the network take only one of the two possible values
0 or 1, i.e., mj; hi 2 ð0; 1Þ. Provided with the activation function,

the conditional distribution of hidden and visible units can be
expressed in the following form:

pðhi ¼ 1jvÞ ¼ gðWivþ ciÞ
pðvj ¼ 1jhÞ ¼ gðW0

jhþ bjÞ
ð11Þ

According to the Boltzmann distribution, probability distri-
butions over hidden and visible vectors are defined as:

Pðm; hÞ ¼ 1

Z
e�Eðm;hÞ ð12Þ

where Z ¼P e�Eðm;hÞ is the normalizing constant and

Eðv; hÞ ¼ �b0v� c0h� h0Wv is the energy function [99]. The
conditional probability distribution can also be computed by

integral, and the parameters can then be optimized by mini-
mizing the Kullback-Leibler divergence.

Overall, given the network architectures and optimized

parameters, the distribution of the visible units could be com-
puted as:

PðvÞ ¼
X
h

pðv; hÞ ¼
X
h

e�Eðv;hÞ

Z
ð13Þ

A DBN can be viewed as a stack of RBMs [6,24,100] or
AEs [66,101]. Similar to RBMs, DBNs can learn the
distribution of the samples, or learn to classify the inputs

given class labels [3]. However, the pðhÞ in the formula
pðvÞ ¼Phpðv; hÞ ¼

P
hpðhÞpðv=hÞ is replaced by a better model

after the weight of connections W is learned by an RBM

[3,100].
In addition to feature extraction, RBMs can also learn dis-

tributions of unlabeled data as generative models, and classify
labeled data as discriminative models (regard the hidden units

as labels). Similar to AEs, RBMs can also pre-train parameters
for a complex network.

Convolutional neural networks

Different from other deep learning structures, artificial neu-
rons in convolutional neural networks (CNNs) extract features
of small portions of input images, which are called receptive

fields. This type of feature extraction was inspired by the visual
mechanisms in living organisms, where cells in the visual cor-
tex are sensitive to small regions of the visual field [52,102].

Besides the activation function, there are two particular
types of layers in CNNs: the convolutional layer and the pool-
ing layer (Figure 2). In the convolutional layer, the image is

convolved by different convolutional filters via shifting the
receptive fields step by step [87] (Figure 2A). The convolu-
tional filters share the same parameters in every small portion
of the image, largely reducing the number of hyperparameters

in the model. A pooling layer, taking advantage of the
‘‘stationarity” property of images, takes the mean, the max,
or other statistics of the features at various locations in the

feature maps, thus reducing the variance and capturing
essential features (http://deeplearning.net/tutorial/lenet.html)
(Figure 2B).

Recurrent neural networks

Recurrent neural networks (RNNs) outperform other deep
learning approaches in dealing with the sequential data. Based

on the property of sequential data, parameters across different
time steps of the RNN model are shared. Taking speech as an
example: some vowels may last longer than other sounds; the

difference makes absolute time steps meaningless and demands
that the model parameters be the same among the time steps
[62].

Beside the parameter sharing, RNNs are different from
other multilayer networks by virtue of having a circuit, which
represents hidden-to-hidden recurrence. A simple recurrent
network corresponds to the following equation:

hðtÞ ¼ gðbþUhðt�1Þ þWxðtÞÞ
oðtÞ ¼ cþ VhðtÞ

ð14Þ

where t is the label for time, W and V represent the weights
connecting hidden and input units, and hidden and output

http://deeplearning.net/tutorial/lenet.html


Figure 2 Illustration of convolutional neural network

A. In the convolution layer, fields (different color blocks in the table) of the input patch (represented by a) are multiplied by matrices

(convolution kernel, represented by k). B. In the pooling layer, the results of convolution are summarized (the max pooling is taken as

example here). aij, cij, kij represent the number located in line i and column j in the corresponding matrix.
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units, respectively, b and c are the offsets of the visible and hid-

den layers, respectively, g is the activation function, and U rep-
resents the weights connecting hidden units at time t� 1 to
hidden units at time t (Figure 3).

Similar to other deep learning architectures, RNNs can also

be trained using the BP method. A variant of the BP method
called back propagation through time (BPTT) is the standard
optimization method for RNNs [25,103], and some alternative

methods have also been proposed to speed up the optimization
or to extend its capacity [63,104–107].

Applications in biomedicine

Owing to advances in high-throughput technologies, a deluge
of biological and medical data has been obtained in recent dec-

ades, including data related to medical images, biological
sequences, and protein structures. Some successful applica-
tions of deep learning in biomedical fields are reviewed in this
section and a summary of applications is shown in Table 1.

Medical image classification and segmentation

Machine learning for medical images has long been a powerful

tool in the diagnosis or assessment of diseases. Traditionally,
discriminative features referring to medical image interpreta-
tion are manually designed for classification (detection of
lesions or abnormalities) and segmentation of regions of inter-

est (tissues and organs) in different medical applications. This
requires the participation of physicians with expertise.
Nonetheless, the complexity and ambiguity of medical images,

limited knowledge for medical image interpretation, and the
requirement of large amounts of annotated data have hindered



Figure 3 Illustration of recurrent neural network

A. The unfold form of common neural networks (top) and schema (bottom). B. An illustration of recurrent neural networks (top) and

their unfold form (bottom). The red square represents one time step delay. Different from panel A, the arrows in panel B represent sets of

connections. W and B represent the weight matrix and bias vector, respectively. x and y represent the input and output of the network,

respectively; h indicates the hidden units of network; L consists of couples of transformations, such as densely-connected layers or

dropout layers; U indicates the transformation between two neighbor time points; and t represents the time point.
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the wide use of machine learning in the medical image domain.
Notably, deep learning methods have attained success in a
variety of computer vision tasks such as object recognition,

localization, and segmentation in natural images. These have
soon brought about an active field of machine learning in med-
ical image analysis.

Segmentation of tissues and organs is crucial for qualitative
and quantitative assessment of medical images. Pereira et al.
used data augmentation, small convolutional kernels, and a
pre-processing stage to achieve accurate brain tumor segmen-

tation [108]. Their CNN-based segmentation method won first
place in the Brain Tumor Segmentation (BRATS) Challenge in
2013, and second place in 2015. Havaei et al. presented a fully

automatic brain tumor segmentation method based on DNNs
in magnetic resonance (MR) images with a two-phase training
procedure [109], which obtained second place in the 2013

BRATS. Their methodology was tested on the publicly avail-
able datasets INbreast [110] and Digital Database for Screen-
ing Mammography (DDSM) [111], outperforming in terms of
accuracy and efficiency several state-of-the-art methods when
tested on DDSM. Additional medical applications employing
a deep learning architecture have been demonstrated in seg-

menting the left ventricle of the heart from the MR data
[112], the pancreas through computed tomography (CT)
[113], tibial cartilage through magnetic resonance imaging

(MRI) [114], the prostate through MRI [115], and the hip-
pocampus through MR brain images [116,117]. The differenti-
ation of tissues or organs in medical images has been termed
semantic segmentation [118,119] in which each pixel of an

image is assigned to a class or a label. The skeletal muscles,
organs, and fat in CT images are well delineated through
semantic segmentation based on a DNN architecture [120].

Similarly, the semantic segmentation of MR images also
attained accurate segmentation results [121–123].

Detection of lesion and abnormality is the major issue in

medical image analysis. Deep learning methods learn the rep-
resentations directly instead of using hand-crafted features
from training data. A classifier is then used to assign the



Table 1 Applications of deep learning frameworks in biomedical informatics

Topic DL architecture Brief description Refs.

Medical images analysis CNN Brain tumor segmentation, won top 2 in BRATS [108]

Segmentation of pancreas in CT [113]

Knee cartilage segmentation [114]

Segmentation of hippocampus [117]

Predict semantic descriptions from medical images [118]

Segmentation of MR brain images [121]

Anatomy-specific classification of medical images [123]

Cerebral microbleeds from MR images [125]

Coronary artery calcium scoring in CT images [126]

Nuclei detection in routine colon cancer histology images [129]

Histopathological cancer classification [130]

Invasive ductal carcinoma segmentation in WSI [132]

Mammographic lesions detection [133]

Haemorrhages detection in fundus images [137]

Exudates detection in fundus images [138]

SAE Segmentation of hippocampus from infant brains [116]

Organ detection in 4D patient data [122]

Histological characterization healthy skin and healing wounds [124]

Scoring of percentage mammographic density and mammogra ic texture related to breast cancer risk [134]

Optic disc detection from fundus photograph [135]

DBN Segmentation of left ventricle of the heart from MR data [112]

Discriminate retinal-based diseases [139]

DNN Brain tumor segmentation in MR images, won 2nd place in BR TS [109]

Prostate MR segmentation [115]

Gland instance segmentation [119]

Semantic segmentation of tissues in CT images [120]

Mitosis detection in breast cancer histological images [131]

RNN EEG-based prediction of epileptic seizures propagation using t e-delayed NN [141]

Classification of patterns of EEG synchronization for seizure p ediction [142]

EEG-based lapse detection [143]

Prediction of epileptic seizures [144]

Genomic sequencing and gene expression analysis DNN Gene expression inference [145]

Identification of cis-regulatory regions and replication timing d mains [151]

Prediction of enhancer [152]

Prediction of splicing patterns in individual tissues and differen es in splicing patterns across tissues [159]

Annotation of the pathogenicity of genetic variants [161]

DBN Modeling structural binding preferences and predicting binding sites of RNA-binding proteins [146]

Prediction of splice junction at DNA level [156]

Prediction of transcription factor binding sites [148,149]

Annotation and interpretation of the noncoding genome [151]

Prediction of the noncoding variant effects de novo from seque e [162]
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representations to a probability that indicates whether or not
the image contains lesions. In other words, the deep learning
schemas classify each pixel to be a lesion point or not, which

can be done in two ways: (1) classifying the mini patch around
the pixel with a deep network, and (2) using a fully convolu-
tional network to classify each pixel.

Sheet et al. [124] applied a DNN to histologically character-
ize healthy skin and healing wounds to reduce clinical report-
ing variability. Two unsupervised pre-trained layers of

denoising AEs (DAEs) were used to learn features in their
hybrid architecture, and subsequently the whole network was
learned using labelled tissues for characterization. Detection
of cerebral microbleeds [125] and coronary artery calcification

[126] also produced better results when using deep learning-
based approaches. In addition, brain tumor progression pre-
diction implemented with a deep learning architecture [127]

has also shown a more robust tumor progression model in
comparison with a high-precision manifold learning approach
[128].

Detection of pathologies on stained histopathology images
[129–131] exemplify the high precision of deep learning-based
approaches. For breast cancer detection in histopathology

images, Cruz-Roa et al. [132] established a deep learning model
to precisely delineate the invasive ductal carcinoma (IDC)
regions to distinguish the invasive tumor tissue and non-
invasive or healthy tissue. Their 3-layer CNN architecture,

composed of two cascading convolutional and pooling layers,
a full-connected layer, and a logistic regression classifier for
prediction, attained a better F-measure (71.8%) and higher

balanced accuracy (BAC; 84.23%) in comparison with an
approach using handcrafted image features and a machine
learning classifier.

The mammogram is one of the most effective imaging
modalities in early diagnosis and risk prediction of breast can-
cer. A deep learning model [133] trained on a large dataset of

45,000 images attained performance similar to that of certified
screening radiologists in mammographic lesion detection. Kal-
lenberg et al. [134] investigated the scoring of percentage mam-
mographic density (PMD) and mammographic texture (MT)

related to prediction of breast cancer risk. They employed a
sparse AE to learn deep hierarchical features from unlabeled
mammograms. Multinomial logistic regression or softmax

regression was then used as a classifier in the supervised train-
ing. As a result, the performance of their approach was com-
parable with that of the subjective and expensive manual

PMD and MT scorings.
Color fundus photography is an important diagnostic tool

for ophthalmic diseases. Deep learning-based methods with
fundus images have recently gained considerable interest as a

key to developing automated diagnosis systems. A DNN archi-
tecture was proposed by Srivastava et al. [135] to distinguish
optic disc (OD) from parapapillary atrophy (PPA). A DNN

consisting of SAEs followed by a refined active shape model
attained accurate OD segmentation. For image registration,
deep learning in combination with a multi-scale Hessian

matrix [136] was used to detect vessel landmarks in the retinal
image, whereas convolutional neural networks have also pro-
duced excellent results in the detection of hemorrhages [137]

and exudates [138] in color fundus images. It is difficult to
design an automatic screening system for retinal-based diseases
such as age-related molecular degeneration, diabetic retinopa-
thy, retinoblastoma, retinal detachment, and retinitis pigmen-
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tosa, because these diseases share similar characteristics.
Through deep learning methods, Arunkumar et al. [139] suc-
cessfully built a system to discriminate retina-based diseases

only using fundus images. First, a DBN composed of a stack
of RBMs was designed for feature extraction. Then a general-
ized regression neural network (GRNN) was employed to

reduce dimensionality. Finally, a multi-class SVM was used
for classification. Interestingly, Kaggle organized a competi-
tion on the staging of diabetic retinopathy from 35,126 train-

ing and 53,576 test color fundus images in 2015. Using
convolutional neural networks, the top model outperformed
other machine learning methods with a kappa score of
0.8496 (https://www.kaggle.com/c/diabetic-retinopathy-

detection/leaderboard).
In addition to static images, time-series medical records

such as signal maps from electro-encephalography and magne-

toencephalography can also be analyzed using deep learning
methods [140,141]. These deep learning schemas take coded
features of signals [142,143] or raw signals [144] as input,

and extract features from the data for anomaly classification
or understanding emotions.

All the aforementioned applications illustrate that as a

frontier of machine learning, deep learning has made substan-
tial progress in medical image segmentation and classification.
We expect that more clinical trials and systematic medical
image analytic applications will emerge to help achieve better

performance when applying deep learning in medicine.

Genomic sequencing and gene expression analysis

Deep learning also plays an important role in genomic
sequencing and gene expression analyses. To infer the expres-
sion profiles of target genes based on approximately 1000 land-

mark genes from the NIH Integrated Network-based Cellular
Signatures (LINCS) program, Chen et al. presented D-GEX, a
deep learning method with dropout as regularization, which

significantly outperformed linear regression (LR) in terms of
prediction accuracy on both microarray and RNA-seq data
[145]. By applying a multimodal DBN to model structural
binding preferences and to predict binding sites of RNA-

binding proteins (RBPs) using the primary sequence as well
as the secondary and tertiary structural profiles, Zhang et al.
achieved an AUC of 0.98 for some proteins [146]. To predict

binding sites of DNA- and RNA-binding proteins, Alipanahi
et al. developed DeepBind, a CNN-based method, which sur-
passed other state-of-the-art methods, even when trained with

in vitro data and tested with in vivo data [147]. Subsequently,
Lanchantin et al. [148] and Zeng et al. [149] also applied
CNN to predict transcription factor binding sites (TFBSs),
and both studies demonstrated an improvement over the per-

formance of DeepBind (AUC of 0.894). The input of these
deep CNNs is encoded sequence characters obtained through
protein binding microarrays or other assays, and the output

is a real value indicating whether the sequence is a binding site
or not. The deeper model can make more accurate classifica-
tion by extracting higher-level features from the raw nucleotide

sequences [148]. In addition, Kelley et al. presented Basset, an
open source package to apply deep CNNs to learn the chro-
matin accessibility code, enabling annotation and interpreta-

tion of the noncoding genome [150]. Other applications
include that of Li et al. [134] and Liu et al. [151,152], who
proposed deep learning approaches for the identification of
cis-regulatory regions and replication timing domains, respec-
tively. In addition, Yoon and his collaborators employed

RNNs to predict miRNA precursors and targets. As a result,
they achieved 25% increase in F-measure compared to existing
alternative methods [153,154].

Genetic variation can influence the transcription of DNA
and the translation of mRNA [155]. Understanding the effects
of sequence variants on pre-mRNA splicing facilitates not only

whole genome annotation but also an understanding of gen-
ome function. To predict splice junction at the DNA level,
Yoon and his collaborators developed a novel DBN-based
method that was trained on the RBMs by boosting contrastive

divergence with categorical gradients [156]. Their method not
only achieved better accuracy and robustness but also discov-
ered subtle non-canonical splicing patterns [156]. Furthermore,

by exploiting RNNs to model and detect splice junctions from
DNA sequences, the same authors also achieved a better per-
formance than the previous DBN-based method [157].

Frey et al. formulated the assembly of a splicing code as a
statistical inference problem [158], and proposed a Bayesian
method to predict tissue-regulated splicing using RNA

sequences and cellular context. Subsequently, they developed
a DNN model with dropout to learn and predict alternative
splicing (AS) [159]. This model took both the genomic features
and tissue context as inputs, and predicted splicing patterns in

individual tissues and differences in splicing patterns across tis-
sues. They showed that their method surpassed the previous
Bayesian methods and other common machine learning algo-

rithms, such as multinomial logistic regression (MLR) and
SVMs, in terms of AS prediction. Furthermore, they built a
computational model using a Bayesian deep learning algo-

rithm to predict the effects of genetic variants on AS [160].
This model took DNA sequences alone as input without using
disease annotations or population data, and then scored the

effects that variants had on AS, providing valuable insights
into the genetic determinants of spinal muscular atrophy, non-
polyposis colorectal cancer, and autism spectrum disorder.

To annotate the pathogenicity of genetic variants, Quang

et al. developed a DNN algorithm named DANN, which out-
performs logistic regression (LR) and SVMs, with the AUC
metric increased by 14% over SVMs [161]. Zhou et al. pro-

posed a CNN-based algorithmic framework, DeepSEA, to
predict the functional effects of noncoding variants de novo
from sequences [162]. DeepSEA directly learns a regulatory

sequence code from large-scale chromatin-profiling data, and
can then predict the chromatin effects of sequence alterations
with single-nucleotide sensitivity, and further prioritize func-
tional variants based on the predicted chromatin effect signals.

Subsequently, DanQ, a novel hybrid framework that combines
CNN and bi-directional long short-term memory (BLSTM)
RNNs, was presented to predict non-coding function de novo

from sequences alone [163]. DanQ achieved an AUC 50%
higher than other models, including the aforementioned
DeepSEA.

Prediction of protein structure

The 3D structure of proteins is determined by their comprising

amino acid sequence [164]. However, the computational pre-
diction of 3D protein structure from the 1D sequences remains

https://www.kaggle.com/c/diabetic-retinopathy-detection/leaderboard
https://www.kaggle.com/c/diabetic-retinopathy-detection/leaderboard
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challenging [165]. The correct 3D structure of a protein is cru-
cial to its function, and improper structures could lead to a
wide range of diseases [166–168]. Deep learning technologies

have shown great capabilities in the area of protein structure
prediction, which aims to predict the secondary structure or
contact map of a protein.

Lyons et al. reported the first SAE for sequence-based pre-
diction of backbone Ca angles and dihedrals [169]. Heffernan
et al. also employed SAEs to predict secondary structure,

local backbone angles, and solvent-accessible surface area
(ASA) of proteins from amino acid sequences [170]; they
achieved an accuracy of 82% for secondary structure predic-
tion. Spencer et al. proposed DNSS, an ab initio approach to

predicting the secondary structure of proteins using deep
learning network architectures [171]. DNSS was trained using
a position-specific scoring matrix of the protein sequence and

Atchley’s factors of residues, and was optimized to accelerate
the computation using the GPU and compute unified device
architecture (CUDA). Baldi and his colleagues successfully

applied various RNN-based algorithms to predict protein sec-
ondary structure [172–174] and protein contact map [175–
177], with accuracies of 84% and 30%, respectively. Søn-

derby et al. used a bidirectional RNN (BRNN) with long
short-term memory cells to improve the prediction of sec-
ondary structure, with better accuracy (0.671) than that using
state of the art (0.664) [178]. Compared with SAEs, DBNs,

and RNNs, CNNs were seldom used for protein structure
prediction until recently. Li et al. developed Malphite, a
CNN and ensemble learning-based method for predicting

protein secondary structures, which achieved an accuracy of
82.6% for a dataset containing 3000 proteins [179]. Addition-
ally, Lin et al. proposed MUST-CNN, a multilayer shift-and-

stitch convolutional neural network architecture to predict
protein secondary structure from primary amino acid
sequences [180]. Besides classical deep learning architectures,

some other architectures were also employed to predict pro-
tein secondary structure. For example, Lena et al. introduced
a deep spatio-temporal learning architecture, achieved an
accuracy roughly 10% higher than other methods [181],

and Zhou et al. presented a deep supervised and convolu-
tional generative stochastic network, achieving an accuracy
of 66.4% [182].

In addition to the secondary structure prediction, deep
learning was also employed in protein region prediction
[183,184]. For instance, sequenced-based predictor of protein

disorder using boosted ensembles of deep networks (DNdisor-
der), a deep neural network with multi-layers of RBMs [184],
achieved an average balanced accuracy of 0.82 and an AUC
of 0.90. Incorporated with predicted secondary structure and

predicted ASA, a weighted deep convolutional neural fields
(DeepCNF) was proposed to predict protein order/disorder
regions, obtains an AUC of 0.898 on the Critical As-

sessment of Techniques for Protein Structure Prediction
(CASP10) dataset [183]. All of these methods surpassed
other state-of-the-art predictors in accuracy while still

maintaining an extremely high computing speed. Recently,
RaptorX-Property, a web server employing DeepCNF, was
also presented to predict protein structure properties, includ-

ing secondary structure, solvent accessibility, and disorder
regions [185]. RaptorX-Property can be easily used and offer
good performance (an AUC of 0.89 on its test data).
Conclusion and perspective

Deep learning is moving toward its original goal: artificial
intelligence. The state-of-the-art feature extraction capacity

of deep learning enables its application in a wide range of
fields. Many deep learning frameworks are open source,
including commonly-used frameworks like Torch, Caffe,

Theano, MXNet, DMTK, and TensorFlow. Some of them
are designed as high-level wrappers for easy use, such as Keras,
Lasagne, and Blocks. The applications of deep learning algo-
rithms is further facilitated by the freely available sources.

Figure 4 summarizes commonly-used frameworks in Github
(https://github.com/) where the number of stars reflects the
popularity of the frameworks.

Breakthroughs in technologies, particularly next-generation
sequencing, are producing a large quantity of genomic data.
Efficient interpretation of these data has been attracting much

attention in recent years. In this scenario, uncovering the rela-
tionship between genomic variants and diseases, and illustrat-
ing the regulatory process of genes in cells have been important

research areas. In this review, we introduced the way deep
learning gets involved in these areas using examples. With deep
architecture, these models can simulate more complex trans-
formations and discover hierarchical data representations.

On the other hand, almost all of these models can be trained
in parallel on GPUs for fast processing. Furthermore, deep
learning can extract data-driven features and deal with high-

dimensional data, while machine learning usually depends on
hand-crafted features and is suitable only to low-dimensional
data. Thus, deep learning is becoming more and more popular

in genomic sequence analysis.

https://github.com/
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Deep learning is represented by a group of technologies
(introduced in brief description of deep learning), and has been
widely used in biomedical data (introduced in applications in

biomedicine). SAEs and RBMs can extract patterns from unla-
beled data [186] as well as labeled data when stacked with a
classifier [156]. They can also deal with dynamic data [187].

CNNs are most commonly used in the biomedical image anal-
ysis domain due to their outstanding capacity in analyzing spa-
tial information. Although relatively few CNNs are used in

sequencing data, CNNs have great potential in omics analysis
[147] and biomedical signals [142]. On the other hand, RNN-
based architectures are tailored for sequential data, and are
most often used for sequencing data [154,157] and in dynamic

biomedical signals [144], but less frequently in static biomedi-
cal images. Currently, more and more attention is being paid
to the usage of deep learning in biomedical information, and

new applications of each schema may be discovered in the near
future.

Despite the notable advantages of deep learning, challenges

in applying deep learning to the biomedical domain still
remain. Take biomedical image analysis for instance: we use
fundus images to exemplify how deep learning works to define

the level of diabetic retinopathy, and to detect lesion areas in
different ways. Besides high accuracy and speed, the intelligent
use of receptive fields also endows deep learning with over-
whelming superiority in terms of image recognition. Further-

more, the development of end-to-end classification methods
based on deep learning sheds new light on classifying pixels
as lesioned or not. However, the usage of deep learning in

medical images is still challenging. For model training, we need
large amounts of data with labels, sometimes with labels in
terms of pixel classification. Manually labeling these medical

images is laborious and requires professional experts. On the
other hand, medical images are highly associated with privacy,
so collecting and protecting the data is demanding. Further-

more, biomedical data are usually imbalanced because the
quantity of data from normal classes is much larger than that
from other classes.

In addition to the balancing challenges, the large amount

of data required, and the labeling for biomedical data, deep
learning also requires technological improvements. Unlike
other images, subtle changes in medical images may indicate

disease. Therefore, analyzing these images requires high-
resolution inputs, high training speed, and a large memory.
Additionally, it is difficult to find a uniform assessment met-

ric for biomedical data classification or prediction. Unlike
other projects, we can tolerate false positives to some extent,
and reject few or no false negatives in disease diagnosis. With
different data, it is necessary to assess the model carefully

and to tune the model according to characteristics of the
data. Fortunately, the deeper networks with inception mod-
ules are accelerated [188,189] and provide higher accuracy

in biomedical image analysis [190]. On the other hand,
crowdsourcing approaches have begun to pave the way in
collecting annotations [191,192], which may be an important

tool in the next few years. These bidirectional drivers would
promote the applications of deep learning in biomedical
informatics.

As a long-term goal, precision medicine research demands
active learning from all biological, biomedical, as well as
health data. Together with medical devices and instruments,
wearable sensors and smart phones are providing unprece-
dented amounts of health data. Deep learning is a promising
interpreter of these data, serving in disease prediction, preven-
tion, diagnosis, prognosis, and therapy. We expect that more

deep learning applications will be available in epidemic predic-
tion, disease prevention, and clinical decision-making.
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U, Hovland P, Norris B, editors. Automatic differentiation:

applications, theory, and implementations. Berlin: Springer,

Berlin Heidelberg; 2006, p. 15–34.

[21] LeCun Y. Une procédure d’apprentissage pour réseau à seuil
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