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ABSTRACT1

Despite the rapid evolution of new sequencing2

technologies, structural variation detection remains3

poorly ascertained. The high discrepancy between the4

results of structural variant analysis programs makes5

it difficult to assess their performance on real datasets.6

Accurate simulations of structural variation distributions7

and sequencing data of the human genome are crucial8

for the development and benchmarking of new tools.9

In order to gain a better insight into the detection of10

structural variation with long sequencing reads, we11

created a realistic simulated model to thoroughly compare12

SV detection methods and the impact of the chosen13

sequencing technology and sequencing depth. To achieve14

this, we developed Sim-it, a straightforward tool for the15

simulation of both structural variation and long-read16

data. These simulations from Sim-it revealed the strengths17

and weaknesses for current available structural variation18

callers and long read sequencing platforms. Our findings19

were also supported by the latest structural variation20

benchmark set developed by the GIAB Consortium. With21

these findings, we developed a new method (combiSV)22

that can combine the results from five different SV callers23

into a superior call set with increased recall and precision.24

Both Sim-it and combiSV are open source and can be25

downloaded at https://github.com/ndierckx/.26

27

INTRODUCTION28

In order to decipher the genetic basis of human disease, a29

comprehensive knowledge of all genetic variation between30

human genomes is needed. Until recently, the emphasis has31

been on single-nucleotide polymorphisms, as these variants32

are easier to trace with current sequencing technologies and33

algorithms (1, 2). Over the past 20 years, we gained a better34

view on the prevalence of structural variation (SV), which35

changed our perspective on the impact it has on genomic36

disorders. We now know that structural variation contributes37

more to inter-individual genetic variation at the nucleotide38

level than single nucleotide polymorphisms (SNPs) and short39

indels together (3, 4). Structural variation covers insertions,40

deletions, inversions, duplications and translocations that are41

∗To whom correspondence should be addressed. Email: nicolasdierckxsens@hotmail.com
†To whom correspondence should be addressed. Email: xiezhi@gmail.com

at least 50 bp in size. The limited length of Next-Generation42

Sequencing (NGS) reads (≤ 300 bp) hampers the detection43

of SVs, especially for insertions (3, 5). These technical44

limitations can be partially overcome by the third-generation45

sequencing, which is capable of producing far longer read46

lengths (6, 7). The race for dominance on the third-generation47

sequencing market has significantly reduced the costs per Mb48

and increased the throughput and accuracy, which makes these49

technologies (PacBio and Oxford Nanopore) currently the best50

option for structural variance detection (8).51

The downside of these longer reads are their lower52

accuracies (85-95%) compared to NGS reads (> 99%), which53

requires new computational tools to achieve an optimal SV54

detection. Even though several algorithms were developed55

over the past decade, there is a large discrepancy between56

their outputs. Assessing the performance of SV detection57

tools is not straightforward, as there is no gold standard58

method to accurately identify structural variation in the human59

genome. To overcome this shortcoming, the Genome in a60

Bottle (GIAB) Consortium recently published a sequence-61

resolved benchmark set for identification of SVs, though it62

only includes deletions and insertions not located in segmental63

duplications (9). For as long as there is no completely resolved64

benchmark available, it is crucial to simulate a human genome65

with a set of structural variations that resembles reality as66

close as possible. There are a wide range of structural variation67

and long sequencing reads simulators available, yet without68

a thorough benchmark, it is impossible to know which tools69

are best suited to design the model you want to simulate.70

Therefore we compared several structural variance and long71

read simulators for their system requirements and available72

features. Furthermore we introduce Sim-it, a new SV and long73

read simulator that we designed for the assessment of SV74

detection with long read technologies.75

The most complete structural variance detection study to76

date identified around 25,000 SVs for each individual by77

combining a wide range of sequencing platforms (3). The78

large amount of sequencing data used for this study makes it79

too costly to reproduce it on a larger scale, but it can be used80

as a golden standard for other SV studies. We used the results81

of this study to produce a realistic model for the evaluation of82

the available SV detection algorithms and to develop a new83

script that can improve SV detection by combining the results84

of existing tools.85

1
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Table 1 | Available features and system requirements of structural variation
simulators.

*SCNVsim was excluded from the benchmark.

RESULTS86

Structural variation simulation benchmark. We compared87

the features and computational resources of five structural88

variation simulators, as shown in Table 1. Although all89

simulators can simulate the most common types of structural90

variation (insertions, deletions, duplications, inversions and91

translocations), more complex SV events need to be included92

in order to reproduce a realistic SV detection model. For93

Sim-it, we also included complex substitutions and inverted94

duplications, both common types of variation in germline and95

somatic genomes (5, 10, 11, 12). Additionally, it is possible96

to combine random generated SV events with a defined list97

of SVs at base pair resolution. Random generated SVs will98

be distributed realistically across the genome with higher99

prevalence around the telomeres. As output, Sim-it produces a100

sequence file in FASTA format and optionally long sequencing101

reads (PacBio or ONT). Although none of the other tools102

has a proprietary method to simulate long reads, Varsim103

can generate long reads through PBSIM or LongISLND.104

Currently, Sim-it does not support short read or phylogenetic105

clonal structure simulation. As for computational resources,106

Sim-it performed best on peak memory consumption and107

runtime. With 1 GB as peak memory consumption and 5108

min 30 s as runtime (single core) to simulate 24,600 SV109

events, Sim-it can be implemented for any set of SVs on110

a small desktop or laptop. SVEngine and Varsim also have111

relatively low runtimes, though a peak memory consumption112

of respectively 24.3 GB and 8 GB limits it’s use on113

machines with limited computational resources. SCNVsim114

was excluded as it does not accept a set list of SVs as input115

and has an upper limit of 600 SVs for random simulation.116

117

Long read simulation benchmark. We assessed the118

quality of the simulated long reads by comparing their119

error profiles to those of real PacBio and ONT sequencing120

reads. Additionally, we compared the features and system121

requirements for each tool.122

Several systems of ONT and PacBio technologies have been123

released in the last decade, each with different specifications124

for the sequencing reads. This complicates an accurate125

simulation as a specific error profile is needed for each126

released system. From the 8 tested simulators, only Sim-it,127

Badread and LongISLND support simulations for both ONT128

and PacBio. Sim-it provides error profiles for ONT, PacBio129

RS II, PacBio Sequel II and Pacbio Sequel HiFi systems,130

while other simulators are limited to one or two error profiles.131

This shortcoming can be overcome by training a new model132

for a system, a feature supported by all simulators apart133

from PBSIM and SimLoRD. This is more laborious and a134

real dataset along with an accurate reference sequence is135

required to train a new model. Not all updates require a136

completely new error profile, therefore we provide the option137

to adjust the overall accuracy and read length independently138

from the error profile. As for computational resources, PBSIM139

performed the best with just 5 minutes and 0.25 GB of RAM to140

simulate 15x coverage for chromosome 1 of GRCh38. Besides141

for DeepSimulator, Badread and NanoSim, computational142

resources stayed within a reasonable range.143

Available features and computational resources determine144

the suitability and user-friendliness of the simulators, but145

not the accuracy of the simulation. Therefore, we compared146

the context-specific error patterns of the simulated reads147

to real long sequencing datasets. Figure 1A shows the148

context-specific errors derived from real data from Nanopore149

PromethION and PacBio Sequel II sequencing reads, as well150

from their respective simulations by Sim-it. These context-151

specific error heat-maps were generated for each of the 8152

simulators and can be found in Supplementary materials.153

NanoSim generated random errors in stead of a context-154

specific error pattern, while PBSIM and SimLoRD have155

simplified patterns. For Sim-it, the length of deletions and156

insertions closely match the real data (Figure 1C and 1D).157

LongISLND has proportionally too many single nucleotide158

deletions, while the asymmetry for DeepSimulator is caused159

by a low absolute number of deletions, which is not adjustable.160

161

Structural variance detection using simulated long162

reads. We assessed the performance of 6 long read SV163

detection algorithms through a realistic model of 24,600 SV164

events. Additionally, we made a comparison between PacBio165

and ONT technology and evaluated the impact of the read166

length and coverage depth. For each simulated dataset, a167

separate score for each type of SV and for the four essential168

parameters that define SVs; namely position, length, type and169

haplotype were calculated.170

We performed a complete analysis on each of the 6 SV171

callers for a Nanopore and a PacBio Sequel II long reads and172

a HiFi reads dataset with a sequencing depth of 20x (Table 2).173

For each dataset, Picky had more than 19,000 false positives174

and false negatives, with an outlier of 46,502 false positives175

for the PacBio HiFi dataset. We therefore excluded Picky for176

any further analysis or graphical output. All the statistics of177

Picky for all three 20x coverage datasets can be examined in178

the Supplementary Data.179

For a sequencing depth of 20x, Sniffles and pbsv achieved180

the best overall performance across all sequencing platforms.181

Sniffles produced the lowest number of false positives182

independent from sequencing platform and coverage depth183

(Table2 and Figure2). For PacBio HiFi data, Sniffles performs184

significantly worse than pbsv, which can be explained by185
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Figure 1 | Context-specific error patterns for mismatches and indels. (A) Context-specific error patterns for real data of Nanopore (9.4.1) and simulated data
from Sim-it. (B) Context-specific error patterns for real data of PacBio Sequel II and simulated data from Sim-it. (C) Deletion lengths for real Nanopore data and
the simulations of the benchmarked tools. (D) Insertion lengths for real Nanopore data and the simulations of the benchmarked tools.

the shorter read lengths (Figure 3). Although pbsv generally186

has a lower recall, it calls SVs more accurately (position,187

length, type, haplotype) than any other tool, independent188

from the platform or coverage depth. Subsequently, this high189

accurateness results in a significant higher number of perfect190

matches compared to other tools. Perfect matches are SVs191

called with the correct type, haplotype, exact length and192

position. For PacBio CLR and PacBio HiFi reads, pbsv193

manages to call respectively 47% and 59.46% of the detected194

SVs perfectly, which is quite impressive compared to the other195

tools. Only SVIM achieved a similar percentage for PacBio196

HiFi reads (57.49%), however not for PacBio CLR reads197

(7.76%). The highest recall is achieved by NanoSV and to a198

certain extend NanoVar (only for PacBio HiFi), however this199

is at the expense of a disproportional amount of false positives.200

The 24,600 SVs can be classified by 5 different types,201

namely deletions, insertions, duplications, inversions and202

complex substitutions. We calculated the recall and precision203

metrics for each type of SV; Table 3 shows the results for the204

Nanopore 20x dataset, data metrics for the PacBio 20x and205

PacBio HiFi 20x datasets reveal similar patterns and can be206

examined in the Supplementary Data. NanoSV only classifies207

insertions, other SVs are indicated as breakend (BND). None208

of the SV callers classify complex substitutions in their output,209

which explains the missing precision values for this type.210

These complex substitutions seem to be the most problematic,211

as their recall values are very low for each of the tools.212

Recall and precision values of inversions are also far below213

the average for each of the tools. The low precision value214

for duplications detected by NanoVar can be explained by the215
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Table 2 | Benchmark statistics on three simulated datasets of 24,600 SVs for 5 existing SV callers and combiSV (combiSV (3): pbsv, Sniffles and SVIM
combined; combiSV (5): all 5 tools combined).

Table 3 | Precision and recall statistics for each type of SV from the Nanopore 20x dataset. (combiSV (3): pbsv, Sniffles and SVIM combined; combiSV (5): all
5 tools combined)

fact that a significant fraction of the insertions are typed as a216

duplication.217

To investigate the influence of increased sequencing218

coverage, we simulated 4 different datasets with sequencing219

depths of 10x, 20x, 30x and 50x for both Nanopore and PacBio220

HiFi (Figure 2). The general trends for increased sequencing221

depth are an increased recall and increased false positives,222

although depending on the tool, they can be disproportional to223

each other. NanoVar was designed to work on low sequencing224

depths and therefore does not display much gains in recall,225

yet a significant reduction in precision. Sniffles benefits the226

most from additional coverage with steep increases of recall227
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Figure 2 | Structural variance detection stats for a series of Nanopore and PacBio HiFi datasets with increasing sequencing depths.

together with a relatively low loss of precision. pbsv has a228

stable performance across all coverages, with the exception229

of Nanopore 50x, which exhibits a steep increase in false230

positives. The big drops in precision for NanoSV and SVIM231

at 20x and 50x coverage of Nanopore are caused by the232

additional filtering step we implemented for minimal variance233

allele coverage (3 for 10x and 20x, 5 for 30x and 50x). This234

shows how important the choice for the minimal coverage235

threshold is to obtain a good balance between recall and236

precision.237

Besides sequencing depth, it is often believed that238

increasing sequencing lengths can improve assemblies and239

variance detection. We compared the SV detection metrics240

for three datasets of Nanopore with median read lengths241

of 15,000, 25,000 and 40,000 bp. We observed an increase242

in recall and overall score with increasing read lengths for243

each of the tools, with the most pronounced improvement244

from median lengths of 15k to 25k. NanoVar and pbsv245

show a modest rise in recall of 1% between 15k and 40k246

lengths, while Sniffles, SVIM, NanoSV and combiSV show an247

increase of 6%. All metrics of this comparison can be found248

in the Supplementary Data.249

250

Structural variance detection using real datasets. There251

is currently no SV call set covering the complete human252

genome that can be used as gold standard in a SV detection253

benchmark. The GIAB Consortium provides an accurate SV254

call-set of 5,260 insertions and 4,138 deletions, covering 2.5255

GB of the human genome. Within the regions of the provided256

BED file, it is possible to accurately determine the recall and257

precision for both deletions and insertions. We benchmarked258

each of the tools for this high confidence set of SVs. We259

observed a similar pattern in benchmark metrics compared to260

the simulated dataset, with the exception of the low precision261

values for NanoVar and NanoSV. Recall values for the GIAB262

dataset are across all tools higher than for the simulated263

datasets, which can be explained by the exclusion of complex264

regions in the GIAB call set. The benchmark metrics of this265

real dataset also confirms our findings from the simulated266

datasets, though sometimes more outspoken in the real dataset.267

Sniffles has the highest precision, pbsv characterizes SVs the268

most accurate, NanoSV has the highest recall, low haplotype269

scores for sniffles and low position scores for SVIM are all270

findings that were observed with both simulated and real271

datasets.272

We based our simulated datasets on a SV call set273

of NA19240 (nstd152), which was obtained through an274

elaborated SV study that combined a wide range of275

sequencing data (3). To compare our simulation to the276

original genome, we performed the same benchmark on a277

public available PacBio CLR dataset of that study. Recall278

and precision values of the real dataset were significantly279

lower, with an average of respectively 60% and 48%. An280

even more striking difference were the recall percentages of281

around 60% for complex substitutions, while these values282

ranged between 1% and 20% for the simulated datasets,283

independent from sequencing platform or sequencing depth.284

While the overall lower recall and precision values were to285
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be expected due to inaccuracies of the SV call set, we found286

the large rise in recall for complex substitutions questionable.287

We therefore examined several alignments of SVs that were288

typed as complex substitutions. We found that most of these289

complex substitutions are actually insertions or deletions,290

which would explain the high recall values. Most of the291

complex substitutions in nstd152 were determined by merging292

of experiments (optical mapping, sequence alignment and de293

novo assembly) and not associated to just one method. It294

is possible that conflicting findings between methods were295

thought to be caused by complex substitutions as they consist296

of both a deletion and an insertion. We added some concrete297

examples with screenshots of alignments and BLAST results298

of individual reads in the Supplementary Data as evidence of299

these findings.300

301

Improved SV calling with combiSV. This benchmark302

revealed the strengths and weaknesses of each SV calling303

tool for long read sequencing. With this performance data we304

were able to develop a tool (combiSV) that can combine the305

outputs of pbsv, Sniffles, NanoVar, NanoSV and SVIM into306

a superior SV call set, with Sniffles and pbsv as mandatory307

input. The VCF outputs of each tool serve as input and the308

minimal of supported reads for the variance allele has to be309

given. The complete wall time is under 1 minute and less310

than 1 GB of virtual memory is required. By combining the311

strengths of each of the 5 SV callers, we were able to eliminate312

distinct weaknesses and improve overall performance (Table313

2). The most significant improvements were the ratio of total314

matches versus false positives and the accurate definement of315

the SV parameters. The added value of combiSV can also316

be seen by the sequence depth analysis (Figure 2), where317

combiSV has consistently the best overall performance and318

does not show any significant drops in recall or precision319

for any of the sequencing depths. The improved performance320

of combiSV is less pronounced by the precision and recall321

values of the individual SV types, which can be explained322

by the fact that the performance gain was mostly limited323

for deletions and insertions. Most importantly, combiSV also324

showed significant improvement for the real GIAB dataset,325

as it combines the highest recall from NanoSV, the highest326

precision from Sniffles and the accuracy from pbsv. This high327

recall is also achieved without NanoSV, as combiSV(3) only328

combines pbsv, sniffles and SVIM. The combination of all329

5 callers reduced the recall and precision slightly, which is330

probably caused by the high number of false positives of331

NanoSV and NanoVar. Therefore it is not necessary to include332

the output of all 5 SV callers to run combiSV, although it is333

advised to add one additional caller besides pbsv and Sniffles.334

DISCUSSION335

We developed a realistic simulated model to benchmark336

existing structural variation detection tools for long read337

sequencing. This was accomplished with Sim-it, a newly338

developed tool for the simulation of structural variation339

and long sequencing reads. Although there are several340

tools available that can simulate structural variation or long341

sequencing reads, a benchmark study to assess the accuracy of342

these simulators was needed. Besides Sim-it, the combination343

of Varsim and LongISLND (despite the aberration for the344

length of deletions) could also have been used for this345

benchmark study. We simulated in total 5 PacBio and 7346

Nanopore whole genome sequencing datasets of GRCh38347

with coverages ranging between 10x and 50x. With these348

simulations, we assessed the performance of 6 SV callers349

and the influence of increasing sequencing depths and read350

lengths.351

For the majority of the datasets, Sniffles, pbsv and SVIM352

produced the best overall performance with a good balance353

between recall and precision. Sniffles has the lowest number354

of false positives for all datasets, yet performs significantly355

less for PacBio HiFi datasets with a coverage below 30x. pbsv356

defines the SVs the most accurate across all datasets and since357

it is designed for PacBio, it performs the best on this type data.358

NanoSV and NanoVar have high recall numbers, however at359

the cost of a disproportional high false positive rate (to a lesser360

extent for PacBio HiFi data). These findings were supported361

by our benchmark on the high fidelity SV call set of GIAB.362

It is often assumed that higher sequencing depths and longer363

read lengths will improve assembly and variance calling364

outcomes. Yet in our benchmark, increasing sequencing365

depths does not guarantee improved structural variation366

calling. Although there was still a modest rise in recall367

numbers for sequencing depths above 30x, we did observe368

a disproportional rise in false positives above 30x. This rise369

in false positives was not observed for increasing sequencing370

lengths, while we observed an increase in recall for longer read371

lengths across all methods.372

Finally, we looked at precision and recall rates for each type373

of SV. Each tool showed the best performance for deletions374

and insertions, which are the majority of SVs in a human375

genome. More problematic SVs are inversions and complex376

substitutions, wherefore recall rates are respectively between377

45-65% and 1-20%. As complex substitutions are not defined378

by any of the tools, it seems likely that these algorithms are379

not designed to detect this type of SV. New SV callers or380

updates of existing ones could make significant improvements381

in this direction. Although the SV study we used as blueprint382

(3) detected around 3000 complex substitutions per individual,383

we discovered that most of these complex substitutions were384

insertions or deletions. The actual prevalence of this type385

of structural variation is therefore possibly not accurate and386

requires further studies in order to map the complete structural387

variation profile in the human genome.388

This extensive benchmark unveiled the strengths and389

weaknesses of each SV detection algorithm and provided390

the blueprint for the integration of multiple algorithms in a391

new SV detection pipeline, namely combiSV. This Perl script392

can combine the VCF outputs from Sniffles, pbsv, NanoVar,393

NanoSV and SVIM into a superior call set that has the low394

false positive rate of Sniffles, the accuracy of pbsv and a high395

recall as SVIM. The added value of combiSV on simulated396

data was supported by the real dataset of GIAB, where the397

gains were even more outspoken.398

This study shows that a simulated model can be beneficial399

to gain a better understanding in the performance of structural400

variation detection tools. It is crucial that the simulations are401

as accurate as possible. Currently, Sim-it does not simulate402

small indels and SNPs, although they can have an effect on403

the detection of small SVs and will therefore be included in the404

next update. The sequencing depth of real sequencing datasets405
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show much more fluctuations than a simulated one, we406

therefore propose to include a profile of the sequencing depth407

in a real dataset that can be reproduced for the simulation.408

METHODS409

Sim-it. We developed a new structural variation and long read410

sequencing simulator, called Sim-it. The structural variation411

module outputs fasta files of each haplotype, plus an additional412

one that combines all SVs in one sequence. A set list of SVs413

can be combined with additional random generated SVs as414

input. The long read sequencing module outputs sequencing415

reads based on a given error profile and 4 metrics (coverage,416

median length, length range and accuracy). We provide error417

profiles for Nanopore, PacBio RS II, Sequel II and Sequel418

HiFi reads. Additional error profiles can be generated with419

a custom script. Both simulation modules (SV and long420

reads) can be used separately or simultaneously, starting421

from a sequence file as input. We also provide plots with422

the length distributions for the simulated sequencing reads423

and structural variations (insertions, deletions and inversions).424

Sim-it was written in Perl and does not require any further425

dependencies. Sim-it is open source and can be downloaded426

at https://github.com/ndierckx/Sim-it, where a more complete427

manual can be found.428

429

Benchmark of structural variation simulators. We430

compared Sim-it (v1.0) with RSVSim (v1.24.0) (13),431

SVEngine (v1.0.0) (14), SCNVSim (v1.3.1) (10) and VarSim432

(v0.8.4) (11) for computing resource consumption and433

available features. Runtime performance was measured using434

the Unix time command and Snakemake (v5.7.0) (15)435

benchmark function on the custom VCF of 24,600 SVs. We436

did not evaluate SCNVSim performance because it does not437

accept a custom VCF file. All scripts were executed on a Xeon438

E7-4820 with 512GB of memory.439

440

Benchmark of the long read simulators. We compared441

Sim-it (v1.0) with the long read simulators PBSIM (v1.0.4)442

(16), Badread (v0.1.5) (17), PaSS (18), LongISLND (v0.9.5)443

(19), DeepSimulator (v1.5) (20), Simlord (v1.0.3) (21) and444

NanoSim (v2.6.0) (22) for computing resource consumption445

and error frequency within context-specific patterns for446

mismatches and indels using real data of Nanopore and PacBio447

sequencing. Runtime performance was measured using the448

Unix time command and Snakemake (v5.7.0) benchmark449

function on the 15x sequencing coverage simulation with450

chromosome 1 of GRCh38. Context-specific error patterns451

were analyzed by a custom perl script with alignment 30x452

simulated read to 60 Kbp sequence. All scripts were executed453

on a Xeon E7-4820 with 512GB of memory. More details on454

the error profiles used for each simulation can be found in the455

Supplementary Data.456

457

Train customized error profiles for Sim-it. The E. coli458

K12 substrain MG1655 dataset of PacBio Sequel II and459

PacBio RS II was downloaded from the github website of460

Pacific Biosciences. Using the above two datasets we trained461

the error profile of PacBio Sequel II and PacBio RS II. We462

also downloaded the GIAB HG002 dataset of PacBio Sequel463

II HiFi reads powered by CCS. To reduce the computational464

time, we trained the error profile of PacBio Sequel II HiFi465

reads based on chromosome 1 of GRCh38. The Nanopore466

error profile is based on sequencing reads of a human sample467

on PromethION 9.4.1 flow cells.468

469

SV detection on simulated reads.We used the simulated470

data from Sim-it to validate 6 structural variant callers, namely471

Sniffles (v1.0.11) (1), SVIM (v1.3.1) (23), NanoSV (v1.2.4)472

(24), Picky (v0.2.a) (25), NanoVar (v1.3.8) (26) and pbsv473

(v2.3.0). A list of 24,600 SVs, derived from sample NA19240474

of dbVAR nstd152 (3), was used to simulate Nanopore,475

PacBio CLR reads and PacBio HiFi reads for GRCh38 at476

a sequencing depth of 20x. We also simulated 20x normal477

read using GRCh38 with not structural variants at all. Besides478

for pbsv, we aligned the simulated reads to GRCh38 using479

Minimap2 (v2.17-r941) (27). The alignment for pbsv was480

performed using pbmm2 (v1.3.0) with default parameters. The481

exact parameters that were used for the alignments and SV482

callers can be found in the Supplementary Data.483

Furthermore, we simulated additional Nanopore and484

PacBio HiFi reads for GRCh38 at sequencing depths of 10x,485

30x and 50x to study the influence of increasing sequencing486

depths for SV calling. Each of the Nanopore simulations had487

a median read length of 25,000 bp, we also included two488

additional simulations of 15,000 bp and 40,000 bp with a489

sequencing depth of 20x. PacBio long reads have a median490

length of 25,000 bp and the PacBio HiFi reads a median length491

of 15,000 bp. An additional filtering step was added for each492

VCF output; we only retained variances that obtained a PASS493

for the FILTER value, that have a length of 50 bp or more494

and wherefore at least 3 (for sequencing depths 10x and 20x)495

or 5 (for sequencing depths 30x and 50x) reads support the496

variance. This additional filtering step significantly improved497

the output for each tool compared to the raw VCF output.498

Benchmark metrics were calculated by comparing the VCF499

output of each SV caller against the simulated reference set500

of 24,600 SVs. For each detected SV, we looked for possible501

matches in the reference set within a 500 bp range of the502

detected position. When the length of the SV was determined,503

we tolerated an error margin of 30%. If these two conditions504

were met, a detected SV was matched to the SV of the505

reference set, independent from the type or haplotype that506

was called. As there are multiple metrics that define the507

performance of an SV detection algorithm, we adopted an508

overall score that that combines each of the metrics. For each509

detected SV, a maximal score of 1 was possible; 0.4 for the510

correct position, 0.2 for the correct length, 0.2 for the correct511

type of SV and 0.2 for the correct haplotype. The scores for512

length and position proportionally decreased with difference513

compared to the reference set. Finally, the number of false514

positives were subtracted from the total score and eventually515

expressed as a percentage of the maximum possible score516

(Table 2).517

518

SV detection on real datasets. The Genome in a Bottle519

(GIAB) Consortium recently developed a high-quality SV call520

set for the son (HG002/NA24385) of a broadly consented and521

available Ashkenazi Jewish trio from the Personal Genome522

Project. We performed a benchmark on the latest most523

conserved BED file (HG002 SVs Tier1 v0.6.2.bed) for this524

sample, which contains 5,260 insertions and 4,138 deletions.525
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The public available ultralong Nanopore reads (GM24385)526

with an average sequencing depth of 45x were used for this527

benchmark. Furthermore, we compared SV detection metrics528

of a public available PacBio dataset of NA19240 (3) with an529

average sequencing depth of 37x against the results of our530

simulated datasets.531

532

combiSV. With the results of the SV detection benchmark,533

we developed a script to combine the results of pbsv, Sniffles,534

NanoVar, NanoSV and SVIM. The output VCF files of each535

of the 5 tools serve as input, from which the files of pbsv536

and Sniffles are obligatory to run combiSV. The minimal537

coverage of the alternative allele is set to 3 as default value,538

but can be adjusted for datasets with high sequencing depths.539

The script was written in Perl and does not require any540

further dependencies. combiSV is open source and can be541

downloaded at https://github.com/ndierckx/combiSV.542
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15. Köster, J. and Rahmann, S. (2018). Snakemake-a scalable599

bioinformatics workflow engine. Bioinformatics, 34(20), 3600.600

doi.org/10.1093/bioinformatics/bty350601

16. Ono, Y., Asai, K. and Hamada, M. (2013). PBSIM: PacBio reads602

simulator–toward accurate genome assembly. Bioinformatics, 29(1),603

119–121. doi.org/10.1093/bioinformatics/bts649604

17. Wick, R. W. (2019). Badread: simulation of error-prone long reads. Journal605

of Open Source Software, 4(36), 1316. doi.org/10.21105/joss.01316606

18. Zhang, W., Jia, B. and Wei, C. (2019). PaSS: a sequencing607

simulator for PacBio sequencing. BMC bioinformatics, 20(1), 352.608

doi.org/10.1186/s12859-019-2901-7609

19. Lau, B., Mohiyuddin, M., Mu, J. C., Fang, L. T., Bani Asadi, N.,610

Dallett, C. and Lam, H. Y. (2016). LongISLND: in silico sequencing611

of lengthy and noisy datatypes. Bioinformatics, 32(24), 3829–3832.612

doi.org/10.1093/bioinformatics/btw602613

20. Li, Y., Han, R., Bi, C., Li, M., Wang, S. and614

Gao, X. (2018). DeepSimulator: a deep simulator for615

Nanopore sequencing. Bioinformatics, 34(17), 2899–2908.616

doi.org/10.1093/bioinformatics/bty223617
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