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Summary 14 

A complete characterization of genetic variation is a fundamental goal of human 15 

genome research. Long-read sequencing (LRS) improves the sensitivity for structural 16 

variant (SV) discovery and facilitates a better understanding of the SV spectrum in 17 

human genomes. Here, we conduct the first LRS-based SV analysis in Chinese 18 

population. We perform whole-genome LRS for 405 unrelated Chinese, with 68 19 

phenotypic and clinical measurements. We discover a complex landscape of 132,312 20 

non-redundant SVs, of which 53.3% are novel. The identified SVs are of high-quality 21 

validated by the PacBio high-fidelity sequencing and PCR experiments. The total 22 

length of SVs represents approximately 13.2% of the human reference genome. We 23 

annotate 1,929 loss-of-function SVs affecting the coding sequences of 1,681 genes. We 24 

discover new associations of SVs with phenotypes and diseases, such as rare deletions 25 

in HBA1/HBA2/HBB associated with anemia and common deletions in GHR associated 26 

with body height. Furthermore, we identify SV candidates related to human immunity 27 

that differentiate sub-populations of Chinese. Our study reveals the complex landscape 28 

of human SVs in unprecedented detail and provides new insights into their roles 29 

contributing to phenotypes, diseases and evolution. The genotypic and phenotypic 30 

resource is freely available to the scientific community. 31 

Introduction 32 

Human genetic variants comprise single-nucleotide variants (SNVs), small insertions 33 

or deletions (InDels) and structural variants (SVs), and profoundly contribute to many 34 

physical traits and human diseases. SVs are defined as genomic rearrangements that 35 

range from 50 base-pairs (bp) to over megabases (Mbs) in length, including different 36 

forms such as deletion (DEL), insertion (INS), duplication (DUP) and inversion (INV)1. 37 

Accumulating evidence has demonstrated that SVs are associated with many human 38 

diseases, such as neurodevelopment disease and cancer2-6. 39 

While substantial progress had been made in uncovering SNVs and InDels based 40 

on short-read sequencing (SRS) technologies, the discovery and genotyping of SVs 41 
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have been hampered due to the limited power of SRS to detect SVs that frequently 42 

occur in repetitive regions with complex structures. Consequently, the current human 43 

reference genome contains a comprehensive map of SNVs, InDels, but only a relatively 44 

small number of SVs7. More recently, third-generation sequencing (TGS) platforms 45 

such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) 46 

provide long-read sequencing (LRS), which improves the sensitivity for SV discovery 47 

and facilitates a better understanding of the SV spectrum in human genomes8,9. 48 

Recently, a milestone study generated 15 human genomes using LRS with PacBio 49 

technology8. Despite the small sample size, the authors discovered 99,604 non-50 

redundant SVs and 2,238 SVs were shared by all 15 genomes. More recently, a 51 

population-scale SV study using LRS was reported on an Icelandic population10. The 52 

authors identified a median of 23,111 SVs in each sample and some of them might be 53 

Icelander specific. Icelanders are a North Germanic ethnic group that is historically 54 

coherent, with an estimated population close to 360,000. In contrast, Han Chinese is 55 

the largest ethnic group in the world, with a total population of more than 1.3 billion, 56 

comprising around 19% of the human population. China has an area of 9.6 million km2, 57 

with two mega-regions, North and South China. Although several recent studies have 58 

reported on SVs in Chinese genomes using LRS9,11-13, none of them depicted multiple 59 

genomes. The complexity and diversity of genetic variation characterized by SVs 60 

among Chinese populations are unclear. 61 

In order to gain a more complete view of human genomes, we genotyped Chinese 62 

population by performing whole-genome LRS of 405 unrelated Chinese individuals, 63 

with 68 phenotypic and clinical measurements. We detected 132,312 non-redundant 64 

SVs, of which 53.3% were novel. The identified SVs were of high-quality validated by 65 

the PacBio high fidelity (HiFi) sequencing and PCR experiments. We showed the 66 

global properties of the SVs and their widespread phenotypic, clinical and evolutionary 67 

impacts. To sum, we present an important resource for human genome research and 68 

precision medicine. Our study reveals the complex landscape of human SVs in 69 
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unprecedented detail and provides new insights into their roles contributing to 70 

phenotypes, diseases and evolution. The genotypic and phenotypic resource is freely 71 

available to the scientific community. 72 

Results 73 

Sequencing, SV discovery and validation 74 

We performed whole-genome LRS for 405 unrelated Chinese via the PromethION 75 

platform (ONT). Among all the individuals, 206 (50.9%) were males and 199 (49.1%) 76 

were females. The ages ranged from 22 to 81 years, with a median age of 42 years. 77 

These individuals were from 18 provinces in the North (124 individuals), South (198) 78 

and Southwest (53) of China, and the ancestral regions of 30 individuals were not 79 

known (Fig. 1a and Supplementary Table 1). Among them, 68 phenotypic and clinical 80 

measurements for 327 individuals were obtained by health screening (Supplementary 81 

Table 2). 82 

Resequencing of these 405 Chinese generated a total of 20.7 terabases (Tb) of 83 

cleaned sequences, with an average of 51.0 gigabases (Gb) per individual, representing 84 

an average depth of approximate 17-fold (Supplementary Fig. 1a and Supplementary 85 

Table 1). The cleaned reads were then mapped onto the human reference genome 86 

GRCh38, and base mapping rate for different individuals varied from 89.0% to 96.2%, 87 

with an average of 94.1% (Fig. 1b). The mean error rate was 12.6%, ranging from 10.8% 88 

to 16.0% (Methods), which was lower than that of a recent study (15.2%)10 and similar 89 

to a prior benchmarking study (12.6%)14. The percent of deletions, insertions and 90 

substitutions (mismatches) was 5.1%, 3.4% and 4.1%, respectively (Fig. 1c). 91 

Four classes of canonical SVs (DEL, INS, DUP and INV) with a length of at least 92 

50-bp were detected. To obtain reliable SVs, we used three SV callers, Sniffles15, 93 

NanoVar16 and NanoSV17, all of which were specifically designed for SV detection 94 

from LRS (Supplementary Fig. 2a). We retained the SVs identified by at least two 95 

callers (Fig. 1d), which could effectively reduce the false positive of SV detection, 96 
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particularly for sequencing data with lower depth (Supplementary Fig. 2b and 97 

Methods). In addition, we applied three filtering steps that removed an average of 98 

1,331 SVs per sample to further reduce unreliable SVs (Fig. 1e, Supplementary Table 99 

3 and Methods). Finally, we identified 18,489 high-confidence SVs per sample, 100 

ranging from 15,439 to 22,505 (Fig. 1f and Supplementary Table 3). The numbers of 101 

SVs followed an approximately normal distribution (Supplementary Fig. 2c). DELs 102 

and INSs were predominant, and each sample contained an average of 8,215 DELs 103 

(44.4%), 9,942 INSs (53.8%), 258 DUPs (1.4%) and 74 INVs (0.4%) (Fig. 1f). A 104 

balanced number between DEL and INS was also observed in the previously LRS-105 

based SV studies8,10, and slightly higher ratio of INSs than DELs may be due to the 106 

DEL bias of GRCh3818. 107 

We estimated the relationship between the SV number and sequencing depth. It 108 

was observed that the number of SVs just slightly increased when the depth was more 109 

than 15-fold (Supplementary Fig. 2b). The number of SVs was around 19,070 per 110 

sample at 15-fold depth and that increased to around 20,378 at 40-fold depth 111 

(Supplementary Fig. 2b), suggesting that 15-fold sequencing was effective to detect 112 

SVs for a population-scale study. 113 

It is known that LRS technology such as ONT with high sequence error more likely 114 

leads to mis-mapping against the reference genome and therefore causes higher false 115 

discovery of SVs. To estimate the false discovery rate (FDR) of SVs using our SV 116 

identification strategy, SVs detected from a 15-fold ONT dataset (HG002, the child) 117 

were validated by a PacBio high-fidelity (HiFi) dataset from a parent-offspring trio in 118 

Genome in a Bottle (GIAB), whose base accuracy was up to 99.8%19. Out of the 18,737 119 

detected SVs for the HG002 dataset, the overall FDR was 3.2%, illustrating the 120 

reliability of SVs detected using our SV identification strategy from ONT reads with 121 

15-fold depth (Methods). INVs are generally enriched for false positives. To estimate 122 

FDR for INVs, we further manually investigated the strand-specific alignment of long-123 

read for the INV region using Integrative Genomics Viewer (IGV)20. We checked 75 124 
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INVs and detected four false positives with an estimated FDR of 5.3%. 125 

Comparison with published SV datasets 126 

We merged the SVs detected from all the samples for each SV type and constructed a 127 

set of 132,312 non-redundant SVs, comprising 67,405 DELs, 60,182 INSs, 3,956 DUPs 128 

and 769 INVs (Fig. 2a). We compared our data with four previously published datasets 129 

generated using either NGS or TGS platforms (Fig. 2b). To note, the LRS15 set was 130 

the only one generated using the TGS platform (PacBio) from 15 individuals8, which 131 

had the largest overlaps with our data (38,963) and had the smallest unique SV set of 132 

its own (60,641). For other three datasets generated using the NGS platform, there were 133 

30,783, 24,741 and 24,472 SVs that overlapped with the Database of Genomic Variants 134 

(DGV)21, Genome Aggregation Database (gnomAD)22 and the Human Genome 135 

Diversity panel (HGD)23, respectively. In total, 70,471 (53.3%) SVs from our data have 136 

not been previously reported. We further examined the recovery of SVs in the previous 137 

datasets for each SV type. It was notable that although the total numbers of INSs and 138 

DELs were similar in our dataset, the number of recovered INSs with the LRS-based 139 

study, LRS15, was much larger than the SRS-based datasets, illustrating that LRS 140 

technology is particularly efficient to detect INSs (Fig. 2c). 141 

Genomic features of SVs 142 

SVs were nonrandomly distributed across the chromosome and the number of SVs 143 

significantly correlated with chromosome length (R = 0.92, P = 8.3×10-10, Pearson 144 

correlation test) (Fig. 2d). The number generally increased at the ends of chromosome 145 

arms, particularly for DELs, INSs and DUPs (Fig. 2e). The sub-telomeric bias of the 146 

long arms of chromosomes was higher compared to that of short arms (Supplementary 147 

Fig. 3), which was in accord with the pattern detected by an LRS-based SV study using 148 

a PacBio platform8.  149 

We observed that the median lengths of INSs and DELs were 111 bp and 120 bp, 150 

respectively, which was significantly shorter than that of DUPs (1,081 bp) and INVs 151 

(5,496 bp) (Fig. 2f). The longer length of DUPs and INVs was confirmed by our PacBio 152 
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HiFi datasets as well as the PacBio HiFi datasets of the trio from GIAB, indicating that 153 

the observation was not the ONT platform specific. The numbers of DELs and INSs 154 

rapidly decreased as their length increased. There were two clear peaks at sizes around 155 

300 bp and 6 kilobases (kb) for both DELs and INSs (Supplementary Fig. 4), 156 

corresponding to short interspersed nuclear elements (SINEs) and long interspersed 157 

nuclear elements (LINEs)8,10. 158 

The total length of non-redundant SVs was 395.6 Mb, representing approximately 159 

13.2% of the human reference genome, including 125.7 Mb of DELs, 19.8 Mb of INSs, 160 

104.8 Mb of DUPs and 145.2 Mb of INVs (Fig. 2g). On average, SVs affected 23.0 Mb 161 

(around 0.8%) of the genome per individual (Supplementary Table 4), where the 162 

average lengths of DELs and INSs were 7.2 Mb (31.2% of the total SV length) and 3.7 163 

Mb (15.9%), respectively. Despite their lower number, INVs (9.6 Mb, 41.7%) and 164 

DUPs (2.5 Mb, 11.1%) contributed equivalently to the total SV length due to their 165 

considerably longer length. Same INSs were more common in individuals compared to 166 

those of other types, which may be partly due to the DELs bias of GRCh38 or 167 

purification selection of INSs in Chinese population (Fig. 2h). 75.4% of SVs contained 168 

repeat sequences (Supplementary Table 5), which was consistent with the knowledge 169 

that SVs tended to occur in segments with more repetitive sequences1. Among all of 170 

these repeats, VNTRs (25.1% of SVs) and SINEs (19.7%) were predominant 171 

(Supplementary Table 5).  172 

Allele frequencies of SVs 173 

Our datasets offer us an opportunity to identify SVs with a low frequency in a 174 

population. We grouped the SVs into four categories based on their allele frequencies 175 

(AF): singleton (allele count = 1), rare (allele count >1 and AF ≤ 0.01), low (0.01 < AF 176 

≤ 0.05) and common (AF > 0.05). Singletons (56,239) represented 42.5% of the total 177 

identified SVs (Fig. 3a and Supplementary Fig. 5). Additionally, there were 28,925 178 

rare (21.9%), 14,296 low (10.8%) and 32,852 common (24.8%) SVs. Among the 179 

common SVs, 1,264 (3.9%) were shared in all samples. The lower AF values of an 180 
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identified SV, the larger proportion of novel SVs that were not previously reported (Fig. 181 

3a). Specifically, 75.1% of singleton SVs were novel, which was similar to the 182 

percentage of novel singleton SNVs (72.8%) in Koreans24. In contrast, 14.9% of 183 

common SVs were not previously reported. 184 

Singleton SVs are prone to false positives compared with other categories because 185 

they are detected from one sample. To validate the accuracy of singletons, we designed 186 

the primers for 154 randomly selected singleton DELs and INSs from 20 samples and 187 

validated 145 by PCR experiments (FDR = 5.8%). (Supplementary Table 6). In 188 

addition, we sequenced four samples in our study using the Pacbio HiFi (average depth 189 

of 9.35-fold, Methods). There were 510 singletons detected from the ONT reads for 190 

these four samples. And we found that 32 SVs were false positive based on the 191 

validation of PacBio HiFi reads and manual investigation by IGV (FDR = 6.3%). 192 

To estimate how much SV spectrum in Chinese population has been detected in 193 

our study, we assessed the SV numbers with different categories as the number of 194 

samples increased through multiple sampling. Relatively stable number of the common 195 

and low SVs indicated that the samples used in this study was sufficient to characterize 196 

these SVs (Supplementary Fig. 6). The continued increasing trends of the singleton 197 

and rare SVs suggested that a larger sample size was needed to sufficiently detect SVs 198 

with an AF ≤ 0.01. 199 

Functional relevance of SVs 200 

To explore their potential functions, we annotated SVs based on their genomic location, 201 

including coding sequence (CDS), untranslated region (UTR), promoter and intron. A 202 

substantial amount (37.6%) of SVs were located in introns, while 1.0%, 0.9% and 1.7% 203 

of SVs were located in the promoter, UTR and CDS, respectively (Table 1). Among all 204 

the SVs located in the UTR and CDS, singletons were significantly enriched compared 205 

with the other categories (P = 1.1 ×10-4 for singletons in UTR and 5.8 ×10-16 for 206 

singletons in CDS, Fisher’s exact test, Fig. 3b), suggesting that singleton SVs were 207 

more likely to have genetic functions. 208 
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We further classified the SVs that interacted with CDS into three subgroups 209 

according to their breakpoint locations: predicted loss-of-function (pLoF), whole-gene 210 

duplication (WDUP) and whole-gene inversion (WINV) (Methods). While pLoFs 211 

delete coding nucleotides or alter open-reading frames, WDUPs generally cause a 212 

copy-gain of an entire gene, and WINVs regulate gene expression through affecting the 213 

position and order of upstream enhancers and genes25. We annotated a total of 2,277 214 

SVs affecting the coding regions of 3,176 distinct genes, including 1,929 pLoF SVs, 215 

affecting the CDS of 1,681 genes, as well as 202 WDUPs and 146 WINVs, covering 216 

581 and 1,331 genes, respectively (Fig. 3c). Interestingly, Gene Ontology (GO) 217 

analysis revealed that there were 38 genes interested with pLoF SVs that were 218 

significantly enriched in “immunoglobulin receptor binding” (odds ratio = 5.7, adjusted 219 

P value = 7.2×10-18, Benjamini-Hochberg corrected, Supplementary Fig. 7). 220 

On average, individuals carry 2.7 and 2.9 pLoF SVs for singleton and rare 221 

categories, respectively. More than half of pLoF SVs (57.6%) were singletons, and the 222 

median length of all pLoF SVs was 2.2 kb (Fig. 3d). The median length of common 223 

pLoF SVs was just 251 bp, while that of singleton pLoF SVs was up to 4,480 bp 224 

(Supplementary Fig. 8). Longer SVs in the singletons may be more likely to disrupt 225 

gene function. 226 

Phenotypic and clinical impacts of SVs 227 

In order to better understand how pLoF SVs impact clinical phenotypes and diseases, 228 

we annotated these SVs and their associated genes using the Genome-Wide Association 229 

Studies (GWAS) catalog26, Online Mendelian Inheritance in Man (OMIM)27 and 230 

Catalogue Of Somatic Mutations In Cancer (COSMIC)28. For a total number of 1,929 231 

pLoF SVs, 1,231 (63.8%) were intersected with genes cataloged in above databases 232 

(Supplementary Table 7). Among the 1,231 SVs, 58.1% to 60.2% belonged to the 233 

singleton category (Fig. 4a), which was consistent with our previous enrichment 234 

analysis showing that singletons were more likely to be functional (Fig. 3b). At the 235 

gene level, all of the 1,929 pLoF SVs intersected with 1,681 distinct genes, where 957 236 
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genes (56.9%) were annotated in the three databases (Fig. 4b and Supplementary 237 

Table 7). 238 

Many phenotypically and clinically relevant SVs could be discovered from our 239 

dataset. For example, we detected plausible causal variants associated with anemia 240 

which has not been reported. We found a heterozygous rare DEL of 19.3 kb in three 241 

individuals, covering the genes Hemoglobin Subunit Alpha 1 and 2 (HBA1 and HBA2), 242 

whose dysfunctions are known to cause α-thalassemia29 (Fig. 4c). In addition, one 243 

individual had a heterozygous DEL of 27.4 kb, containing gene Hemoglobin Subunit 244 

Beta (HBB), whose dysfunction is known to cause serious hemoglobinopathies, such 245 

as sickle cell anemia and β-thalassemia (Fig. 4c)30. As expected, the mean corpuscular 246 

hemoglobin values (MCH, ranging from 21.3 to 23.8 pg) and the mean corpuscular 247 

volume values (MCV, ranging from 65.9 to 72.3 fL) of these four individuals carrying 248 

the aforementioned heterozygous DELs were significantly lower than individuals with 249 

the reference allele in our study (P = 0.0006 and 0.0005 for MCH and MCV, 250 

respectively, t-test corrected by FDR, Fig. 4c). 251 

Besides rare SVs, we could also detect common SVs that were associated with 252 

various phenotypes. We observed a DEL of 2.4 kb, which existed in 35 homozygous 253 

(15 males and 20 females) and 67 heterozygous (35 males and 32 females) carriers in 254 

our study, covering the complete region of the third exon of GHR (Growth Hormone 255 

Receptor), whose missense mutation is known to cause short stature and dwarfism (Fig. 256 

4d)31. Interestingly, the homozygous carriers were significantly shorter than 257 

heterozygous carriers and people with homozygous reference allele for males (168.9 258 

vs. 172.9 (cm) and 168.9 vs. 172.4 (cm), P = 0.033 for both, t-test corrected by FDR, 259 

Fig. 4d), suggesting that the DEL acted as recessive allele for this gene. In contrast, no 260 

significant difference was observed between these three genotypes in females. The 261 

growth hormone (GH)–insulin-like growth factor (IGF)-I axis is the principle endocrine 262 

system regulating linear growth in children32. This sex different phenotype could be 263 

caused by the cross-talk between the GH/IGF axis and sex hormones, where pituitary 264 
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GH secretion regulates many sex-dependent genes in the liver33, and the pituitary is the 265 

major source of IGF that determines body height, in a sex-dependent manner34. 266 

We further conducted Genome-wide association study (GWAS) for the clinical 267 

phenotypes based on genotyped SVs with minor allele frequency (MAF) > 0.05. We 268 

found that 25 SVs were significantly associated with 14 phenotypes on 13 269 

chromosomes (P < 1.7×10-6, the Bonferroni-corrected significance threshold, 270 

Supplementary Table 8). Of which, 9 SVs were in the introns, and the remaining 16 271 

SVs were in the intergenic regions. One example is that a 114 bp DEL with MAF of 272 

0.10 on Chromosome 5 was significantly associated with urinary crystal (XTAL). This 273 

DEL located in the intron of SLC9A3 (sodium/hydrogen exchanger, isoform 3), that 274 

was previously found to be associated with ammonia metabolism which regulated 275 

acidic or alkaline in urine35 and thus affected the calcium oxalate (CaOx) 276 

crystallization36. 277 

Population evolution of SVs 278 

Previous population genetics studies have shown the genetic differences between 279 

northern and southern Chinese using SNP arrays and NGS-based WGS11,37. We herein 280 

explored the population genetic properties of SVs between these two regional groups. 281 

Principal component analysis (PCA) showed the clear genetic diversity between the 282 

two groups, revealing that population structures were consistent with self-reported 283 

ancestry (Fig. 5a). We further estimated the differentiation between them. The average 284 

value of the fixation index (Fst) was 0.0032, which was slightly higher than the value 285 

estimated by SNVs (Fst = 0.0015) in a previous study11, implying a higher divergence 286 

between the two sub-populations in this study. We observed 15 significant signals (Fst > 287 

0.066, Supplementary Table 9) across the genome, which were clustered into eight 288 

peaks on Chromosomes 1, 2, 3, 6, 10, 12, 14 and 19 (Fig. 5b). Among the 15 signals, 289 

four SVs were located within four genes, respectively, namely HCG4B, IGHG3, MUC4 290 

and SLC1A7 (Fig. 5c and Supplementary Table 9). The top two Fst clusters were 291 

located in the major histocompatibility complex (MHC) region at Chromosome 6 and 292 
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in the immunoglobulin heavy (IGH) cluster locus at Chromosome 14. In the MHC 293 

region, significantly differentiated SVs located in the exons of HCG4B (HLA complex 294 

group 4B) and intergenic regions of HLA-K and HLA-U while MHC was a known site 295 

of extreme genetic diversity across humanity and was reported to be under selection in 296 

East Asian population38. (Fig. 5c and Supplementary Table 9). It is also notable that 297 

although there were seven SVs were significantly differentiated on the IGH cluster loci, 298 

no haplotype block was observed (Fig. 5d), which illustrated the genetic diversity 299 

among individuals, suggesting that accumulation and combination of different 300 

genotypes of IGH genes might be associated with the immunity adaption to diverse 301 

environments. In addition, a 477 bp DEL was observed in intron of SLC1A7, which is 302 

a solute carrier family member and has L-glutamate transmembrane transporter activity 303 

and was previously reported to be the immune-associated prognosis signature for 304 

hepatocellular carcinoma39. The differentiation of SVs in the immunity associated 305 

regions might be due to genetic drift and long-term expose to diverse environments for 306 

sub-populations of Chinese. 307 

Discussion 308 

This study presented one of the largest LRS-based genomic datasets to date. We 309 

generated reliable reference sets for SVs and identified a mean of 18,489 high-310 

confidence SVs per Chinese genome that affected 23.0 Mb of the genome. Our SV 311 

datasets was much larger than the ones from SRS-based studies, where an average of 312 

4,442 and 8,202 SVs per human genome were detected25,40. Out of 132,312 non-313 

redundant SVs described here, 53.3% were previously unreported. The high number of 314 

novel SVs in our study might be due to: (1) the methodological improvements of 315 

detecting SVs using LRS technology; (2) the large number of samples in our study; and 316 

(3) the inclusion of Chinese population, which has been lowly represented in previous 317 

studies. 318 

LRS technology such as ONT with relatively high sequence error rates more likely 319 

leads to mis-mapping against the reference genome and may cause unreliable SV 320 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

detection. We used multi-algorithm ensemble approach and stringent filtering strategy 321 

to improve SV detection. In addition, we performed orthogonal validation using PacBio 322 

high-fidelity (HiFi) sequencing and PCR experiments. The overall FDR of all the SVs 323 

was around 3.2% and that of singleton SVs was around 6%. Compared to a prior study 324 

where an average number of 22,755 SVs per genome was detected by an SV caller, 325 

SMRT-SV8, our study detected a lower number of SVs per genome (18,489), mainly 326 

because we used multiple SV callers and stringent filtering processes. When we applied 327 

one caller, such as Sniffles or NanoVar, to detect the SVs, we could detect an average 328 

of 20,186 or 31,252 SVs per sample, respectively. When estimating the relationship 329 

between the detected SV number and sequencing depth, we found that the number of 330 

SVs just became stable when the depth was more than 15-fold. Our analysis suggested 331 

that our strategy was effective to detect SVs for a population-scale study. 332 

Our datasets enable us to explore SVs with a low frequency in the population. We 333 

provided several lines of evidence that singleton and rare SVs were more likely to be 334 

functional. In particularly, pLoF SVs that altered coding regions and affected clinical 335 

phenotypes could be rare or even singleton in the population, such as long DELs 336 

covering the whole genes of HBA1/HBA2 and HBB. Indeed, a recent study also 337 

discovered rare LoF variants in 26 genes, derived from whole–exome sequencing, were 338 

significantly associated with phenotypes41. 339 

With the rich phenotypic and clinical measurements, our study presents a key step 340 

for establishing a regional reference genome and provides a broad prospect to improve 341 

the interpretation of clinical genetics in Chinese population. To date, many diseases, 342 

such as rare diseases and neurodevelopment-related diseases, have been validated to be 343 

caused by SVs42,43. However, it is still a difficult task to find pathogenic SVs, even 344 

though conducting a whole-genome scan using LRS approaches, as the effects of SVs 345 

still remain largely unknown, particularly for those in noncoding regions. Our SV 346 

dataset constructed from a large Chinese population could help future LRS-based 347 

genomic studies to narrow down candidates for pathogenic variants. 348 
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In summary, given that the current human reference genome and population 349 

genomics have a substantially large number of uncovered SVs, this study presents an 350 

important effort to fill this knowledge gap and provides us the opportunity to detect 351 

novel SVs associated with phenotypes, diseases and evolution. 352 
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Figures and Tables 

  
Figure 1. Overview of samples, datasets and SVs 
a, Overview of information of samples in the study, “NA” denotes not available. 
b, Distribution of base mapping rate of clean data aligning to the reference genome GRCh38. 
c, Error rate for each type, error bars represent standard deviation. 
d, Average No. of SVs identified by Sniffles, NanoVar and NanoSV per individual and the 
overlaps among them. 
e, Average No. of SVs after each filtering step, “Original” means unfiltered SVs detected by at 
least two callers, “Depth”, “Length” and “Region” mean SVs after being filtered by supported 
reads number, extra-long interval and very low complex regions, respectively. 
f, No. of SV for each SV type in each individual. 
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Figure 2. Properties of non-redundant SVs for each SV type 
a, No. of non-redundant SVs of all individuals. 
b, Overlaps of SVs between our study (blue ellipse) and the previously published 
datasets. 
c, Overlaps of SV number between our study and the previously published datasets for 
each SV type. The number on the bar graph indicates the actual number of SVs. 
d, Total No. of non-redundant SVs for each SV type. 
e, No. of genes, repeats and SVs within 500 kb non-overlapping window across 
chromosomes. The two outer circles denote the distribution of genes and density of 
repeats, followed by distributions of DEL (green), INS (blue), DUP (yellow) and INV 
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(orange). 
f, Length distribution for each SV type. Red line indicates the median length of each 
SV type. 
g, Total length of non-redundant SVs for each SV type across chromosomes. 
h, The average No. of individuals for merged non-redundant SVs of each type. 
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Figure 3. Allele frequency of SVs and functional annotation 
a, No. of known and novel SVs for each SV category based on the variant allele 
frequency (AF): singleton (allele count = 1), rare (allele count >1 and AF ≤ 0.01), low 
(AF > 0.01 but ≤ 0.05) and common (AF > 0.05). 
b, Enrichment analysis of genomic location of SVs for each category.  
c, Statistics of predicted Loss-of-Function (pLoF) SV, whole-gene DUP (WDUP) and 
whole-gene INV (WINV). 
d, Individual No. versus SV length for pLoF SVs. The blue figure shows SV length 
from 1-5000 kb while the orange figure shows that from 0-20 kb. 
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Figure 4. pLoF SVs associated with phenotypes and diseases 
a, No. of pLoF SVs with reported genes in GWAS, OMIM and COSMIC for each SV 
category. 
b, No. of genes associated with pLoF SVs.  
c, Example of SVs affecting HBB and HBA1/HBA2 which are associated with anemia. 
Up: IGV screenshot of a 19.3 kb heterozygous DEL covering both HBA1 and HBA2; 
Middle: IGV screenshot of a 27.4 kb heterozygous DEL covering HBB; Bottom: mean 
corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV) values of four 
individuals containing a 19.3 kb DLE (3 individuals) and a 27.4 kb DEL (1 individual) 
and the others. 
d, Example of SVs affecting GHR which is associated with height of male adults. Up: 
IGV screenshot of a 2.4 kb heterozygous DEL completely covering the third exon of 
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GHR; Middle: IGV screenshot of the 2.4 kb homozygous DEL. The p values were 
derived from multiple testing correction. For c and d, “0/0”: homozygous allele same 
as the reference; “0/1”: heterozygous variant; “1/1”: homozygous variant. 
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Figure 5. Genetic differentiation of SVs between sub-populations of Chinese 
a, PCA of the two sub-populations: northern and southern Chinese. The values in 
parenthesis indicate the genetic variations explained by first two PCs. 
b, Fst value between the two sub-populations. The gray horizontal line indicates the Fst 
cutoff of > 0.066 based on permutation. 
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c, Four significantly differentiated SVs located in genes. Barplots on the right panel 
showing the frequency of each SV between northern and southern sub-populations. 
d, Differential SVs clumped to IGH region in chromosome 14 and the genotype patterns 
between the two sub-populations. 
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Table 1. Gene Annotation for SVs in Each SV Category 
Category Promoter (%) UTR (%) CDS (%) Intron (%) Intergenic (%) All 
Singleton 542 (1.0) 594 (1.1) 1,271 (2.3) 21,311 (37.9) 32,521 (57.8) 56,239 

Rare 329 (1.1) 245 (0.8) 441 (1.5) 11,204 (38.7) 16,706 (57.8) 28,925 
Low 154 (1.1) 105 (0.7) 219 (1.5) 5,076 (35.5) 8,742 (61.1) 14,296 

Common 320 (1.0) 201 (0.6) 303 (0.9) 12,208 (37.2) 19,820 (60.3) 32,852 
All 1,345 (1.0) 1,145 (0.9) 2,234 (1.7) 49,799 (37.6) 77,789 (58.8) 132,312 

Number and percent of SVs affecting the promoter (1 kb upstream of gene), untranslated region 
(UTR), coding sequence region (CDS) and intron of protein coding gene. SVs that were not 
intersected with gene were annotated as intergenic region. 
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Methods 
Sample information 
A total of 405 individuals were enrolled in this study (206 males and 199 females) with age 

varying from 22 to 81 years old (Fig. 1a). These individuals came from 18 provinces in China 

according to their self-reported original province. Northern and southern Chinese were 

distinguished based on Qinling Mountain-Huaihe River Line. Among them, 329 individuals 

were recruited at the Health Service Center of Sun Yat-sen University Cancer Center, where 68 

clinical phenotypes from 327 individuals were collected. Additional 76 individuals from the 

West China Hospital of Sichuan University were included in this study. Written informed 

consent was obtained for all the individuals. 

 

Phenotype collection 
Anthropometric measurements, including height, weight and body mass index (BMI), were 

obtained from an automatic electronic meter (SECA GM-1000, Seoul, Korea). Blood tests were 

processed by a hematology automated analyzer (SYSMEX XE-2100, Kobe, Japan). Urine tests 

were determined using an automated urine chemistry analyzer (ARKRAY4030, Tokyo, Japan) 

and a urinary tract infection analyzer (SYSMEX UF-1000i, Kobe, Japan). Biochemical 

detection was performed by an automatic modular analyzer (Cobas C701, Basel, Switzerland). 

Tumor markers such as alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) were 

measured by an immunology modular analyzer (Cobas 8000 e602, Basel, Switzerland). 

 
Library construction and long-read sequencing 
High molecular weight genomic DNA of each individual was extracted from peripheral blood 

leukocytes using HiPure Tissue & Blood DNA Kit (D3018-03, Angen). For the Nanopore 

sequencing, DNA repair, end repair and adapter ligation were conducted during library 

preparation, and 2 µg DNA was Fragmented by g-TUBE (Covaris). DNA repair was performed 

using NEBNext FFPE DNA Repair Mix (M6630L, NEB). End repair was performed using 

NEBNext Ultra II End Repair/dA-Tailing Module (E7546L, NEB). Adapter ligation was 

performed using NEBNext Blunt/TA Ligase Master Mix (M0367L NEB) and Ligation 

Sequencing Kit 1D (SQK-LSK109, Oxford Nanopore Technologies). DNA was purified 

between each step using Agencourt AMPure XP beads (A63882, Beckman Coulter). DNA was 

quantified via a Qubit Fluorometer 2.0 (ThermoFisher Scientific, Waltham, MA). We carried 

out long-read sequencing using a PromethION sequencer and 1D flow cell with protein pore 

R9.4.1 1D chemistry according to the manufacturer's instructions. Reads were base-called in 
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batches by guppy v3.2.8 using the default parameters during sequencing. 

For the PacBio sequencing, the integrity of the DNA was determined with the Agilent 

4200 Bioanalyzer (Agilent Technologies, Palo Alto, California). Eight micrograms of genomic 

DNA were sheared using g-Tubes (Covaris), and concentrated with AMPure PB magnetic 

beads. Each SMRT bell library was constructed using the Pacific Biosciences SMRTbell 

template prep kit 1.0. The constructed library was size-selected by Sage ELF for molecules 

11~15 kb, followed by primer annealing and the binding of SMRT bell templates to 

polymerases with the DNA Polymerase Binding Kit (Pacific Bioscience). Sequencing was 

carried out on the Pacific Bioscience Sequel II platform for 30 hours. 

 

Read quality control and mapping 

We detected lower quality bases at two ends of reads by NanoQC1 v0.8.1 and trimmed 30 bases 

of start and 20 bases of end for each raw read using NanoFilt1 v2.2.0 due to their lower quality. 

We kept the reads with length longer than 500 bp and mean quality higher than seven for 

downstream analysis. The statistics of length and quality value of clean reads was performed 

using NanoPlot1 v1.20.0. The clean reads were then aligned to the primary assembly of human 

reference genome GRCh38 using minimap22 v2.15-r905 with the recommended option for 

ONT reads (-x map-ont) and the additional parameters "--MD -a". Aligned files with SAM 

format were converted to BAM format and then sorted using SAMtools3 v1.9. Summary of 

aligned information for BAM file was conducted by command "stat" of SAMtools and region 

depth of aligned file was estimated by mosdepth4 v0.2.5. The read base mapping rate and 

sequencing error rate were estimated with the method previously described5. Specifically, we 

aligned the cleaned reads to GRCh38 and estimated the rates of substitutions, insertions and 

deletions based on the mapping result, excluding secondary alignments and the soft-clipped 

sequences. 

 

Detection of high-confidence SVs 

To obtain high-confidence SVs, we employed multiple tools to call SVs and conducted a series 

of filtering steps (Supplementary Fig. 2a). Sniffles6 v1.0.10, NanoVar7 v1.3.6 and NanoSV8 

v1.2.4, which were SV callers specifically designed for long-read, were used to detect SVs. 

Sniffles was used with parameters "--min_support 2 --min_length 50 --num_reads_report -1 --

min_seq_size 500 --genotype --report_BND --report_seq". We set the following parameters for 

NanoSV: “--data_type ont --mincov 2 --minlen 50”. NanoVar had been run with the default 

parameters. 
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We merged the SV call sets of each individual derived from the above three SV callers for 

each type SV. We applied the Cluster Affinity Search Technique algorithm (CAST)5,9 to merge 

SVs independently for each SV type based on the variant position and length5. In order to 

facilitate the implementation of this algorithm for INSs, the end coordinate of INS was set as 

the sum of start coordinate and the SV length. First, we segregated all discovered SVs into non-

overlapping groups. For each group, we represented SVs as nodes in a graph and drew an edge 

between two SVs if they had a minimum mutual overlap of at least 50% of the length. The SV 

merging can be modeled by a corrupted clique graph. Consequently, the merged SVs detected 

by at least two callers were extracted. As suggested by benchmark analysis of LRS callers in 

our study (Nicolas Dierckxsens et al., unpublished), Sniffles showed the most balanced 

performance following by NanoVar and NanoSV for ONT reads. Therefore, we prioritized the 

results of Sniffles, followed by NanoVar. To obtain high-quality SVs, we then conducted three 

steps to filter out lower quality SVs (Supplementary Fig. 2a). First, we extracted SVs that 

were supported with at least three reads. In addition, INSs and DELs with length larger than 2 

Mb were discarded. While INVs and DUPs larger than 5 Mb were discarded. Furthermore, 

sites in the centromere region with length of 61.9 Mb in 22 autosomes and the X chromosome 

were removed from further analysis. We identified and discarded SVs intersected with gap 

regions (marked as “N”) and high depth regions (≥ 500×, estimated by mosdepth4 v0.2.5) with 

BEDTools10 v2.27.1. The genomic position of gap and centromere regions were downloaded 

via the UCSC Tablebrower11.  

To discern the relationship between the discovery rate of SVs and sequencing depth using 

different SV callers, we applied the above strategy to the Nanopore (ONT) reads of HG002 

from Genome in a Bottle (GIAB). First, we got the sparse sequences with different depths 

ranging from 8× to 40× by randomly selecting reads from the deep sequencing clean data of 

HG002. Then the mapping tool and SV callers coupled with the same parameters in this study 

were used to detected SVs for each dataset. The method “Combine” means the SV shared by 

at least two of three callers (Supplementary Fig. 2b). The ratio threshold for SV supported 

reads was 0.2, which was equal to 3 supported reads for 15-fold data. We found that a single 

caller was not sufficient to obtain high-confidence SVs, especially for depth lower than 10×. 

The results combined from callers with higher sensitivity (NanoSV) and precision (NanoVar), 

and balanced performance (Sniffles) can be used for detecting high-confidence SVs. At the 

same time, our stringent strategy might discard some true SVs, which contributed to the smaller 

number of detected SVs compared with previously study12. In addition, the SV number became 

stable when the sequencing depth was more than 15×. For Combine method, 19,070 SVs were 
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detected at depth of 15×, which was 93.6% of the total number (20,378) at depth of 40× 

(Supplementary Fig. 2b), indicating that the median depth (15×) sequencing data was a cost-

effective method for genetic research at a population-scale. 

 

Non-redundant SVs and genotypes in the population 
A large proportion of SVs were carried by multiple individuals because of their genetic 

similarity within population. To remove redundancies, we merged SVs of all the individuals 

using CAST algorithm. Any region that frequently occurred across the population was selected 

to represent the non-redundant SVs. SVs were genotyped based on the variant allele balance 

(VAB). The genotype of individual was assigned as “0/0” if VAB ≤ 0.2, and genotype was “0/1” 

and “1/1” for 0.2 < VAB ≤ 0.8 and VAB > 0.8, respectively13. The threshold was same to prior 

study by Pedersen et al.13and similar to that of vg toolkit (0.14 for default) when applying graph 

genotyping14. 

After genotyping, the merged SVs were classified with four categories based on the 

variant allele frequency (AF): singleton (allele count = 1), rare (allele count >1 and AF ≤ 0.01), 

low (0.01＜ AF ≤ 0.05) and common (AF > 0.05). To estimate the relationship between non-

redundant SV number for different categories and sample size, we merged SVs randomly 

sampled from 100 to 405 samples while setting step size as 3, and repeated four times for each 

step. Then we calculated SV number for each category and regarded the average of four times 

as the estimate value of each step. We observed that the number of common SVs in population 

was relatively stable (Supplementary Fig. 6). As samples increased, the number of low SVs 

decreased and rare SVs increased, and the steps appeared when the sample number was a 

multiply of 50 due to the same integer threshold in this period. However, the total number of 

low and rare SVs increased with similar trend of singletons. 

 

False discovery rate (FDR) of detected SVs 

In order to estimate the false discovery rate (FDR) for the detected SVs, we applied the strategy 

used in this study to the published dataset comprising of a parent-offspring trio with ONT and 

PacBio high-fidelity (HiFi) reads (accuracy > 99%). The depths of PacBio HiFi reads for 

HG002, HG003 and HG004 were 19.5×, 21.9×, and 21.6×, respectively. Simultaneously, we 

randomly selected 15.1× depth sequences from cleaned ONT reads for HG002 (child). After 

detecting SVs for each dataset via the same strategy as stated before, we compared SVs from 

HG002 with ONT reads to those of the trio with HiFi reads. For the 18,737 SVs detected by 
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ONT reads, there were 1,165 (6.2%) SVs not detected by HiFi reads of the trio. After manual 

investigation of IGV snapshot of HG002 with ONT reads and the corresponding PacBio HiFi 

reads, we finally found 608 false positive SVs in HG002 with ONT reads, and the FDR of SV 

detection was 3.2%. Among them, false positives for DEL, INS, DUP and INV were 459 

(5.4%), 133 (1.3%), 11 (6.3%) and 4 (5.3%), respectively. 

Singletons are known to have a higher error rate compared with the other categories 

because they existed in only one sample. To further orthogonally validate the accuracy of 

singletons uncovered in this study, we sequenced PacBio high-fidelity (HiFi) reads for CN365 

(10.5×), CN366 (7.7×), CN371 (7.8×) and CN372 (11.4×) and then detected SVs applying 

above method. Among 510 singletons discovered by ONT reads for these samples, 32 SVs 

were false positive based on the validation of PacBio HiFi reads and manual curation, with an 

FDR of 6.3%. 

Besides the orthogonal validation for singletons using PacBio HiFi data, we further 

validated singletons using PCR experiments. We randomly selected singletons from 20 samples 

with SV lengths ranging from 60 to 810 bp (average of 293 bp) (Supplementary Table 6) and 

designed the primers using BatchPrimer315 to amply the SV fragments. We conducted each 

PCR for positive sample, followed by negative sample and purified water without DNA, which 

were consider as negative control. Totally, we designed primers for randomly selected 154 

DELs and INSs. Among them, amplified lengths for 145 (94.2%) primers were consistent with 

the targets, and nine primers failed to amplify target fragments (https://github.com/xie-

lab/PGC/tree/master/data/PCR). The estimated FDR of singletons was 5.8% (Supplementary 

Table 6).  

 

SV density of Meta-chromosome 
To compute the density of SVs of chromosomes, we normalized the lengths of all 22 autosomes 

and X chromosome. First, we split the chromosomes into p-arm and q-arm. The value of 0 to 

1 corresponded to the telomere to centromere of p-arm, and the value of 1 to 2 corresponded 

to the centromere to telomere of q-arm. For each arm, we set a window of 100 kb and then 

calculated the SV number in each overlapping window. We normalized value of each window 

based on the positions relative to total length of each arm. 

 

Comparison of non-redundant SVs to the published datasets 
To assess the known and novel SVs for our non-redundant SV call set, we compared it to some 

published datasets, including LRS study of 15 human genomes (LRS15)12, Database of 
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Genomic Variants (DGV, release 2-25-2020)16, Genome Aggregation Database (gnomAD 

v2.1)17 and Human Genome Diversity panel (HGD)18. We extracted the position relative to 

GRCh38 and length information for each SV. The hg38 coordinates of gnomAD was converted 

by LifeOver (https://genome-store.ucsc.edu/)19 based on the original hg37 version. Copy 

number variation (CNV) with copy gain and copy loss were regarded as DUP and DEL, 

respectively. Additionally, the mobile element insertion (MEI) in those datasets were 

considered as INS. The end position of INS was defined as the sum of original end and the 

length of INS when comparing INSs between different datasets. We excluded INSs whose 

insertion length was not available because both SV length and position information should be 

taken into account. To compare with our dataset, we conducted algorithm CAST to 

independently remove redundant SVs for each downloaded dataset as described in SVs 

merging. Intersected regions for each SV type between our study and the published datasets 

were conducted using BEDTools, and SVs were considered as overlapped if the reciprocal 

overlap was larger than 50%.  

 

Repeat analysis of SV sequence 
In order to better evaluate the pattern of repeat sequences for SVs, we selected the sequence of 

the individual with longest SV length in each merged SV. Consequently, we successfully 

obtained 55,476, 42,912, 3,956 and 770 sequences for DEL, INS, DUP and INV, respectively 

(Supplementary Table 3). In aggregate, 103,114 (77.9% of total SVs) sequences were used 

for downstream analysis of repeat pattern. The repeat sequences were searched by 

RepeatMasker v4.0.9 (http://www.repeatmasker.org) based on databases of Dfam20 v3.0 and 

RepBase21 (release 10-26-2018) with command “RepeatMasker -species human -pa threads -

gff -dir output sv_seq.fa” and Tandem Repeat Finder  (TRF)22 v4.09 with command “trf 2 7 7 

80 10 50 500 -f -d -m”. Each SV was classified into the repeat family if it was occupied by 

more than half of the SV length. For tandem repeats, the repeat unit length ≥ 7 bp were 

annotated as variable number of tandem repeats (VNTR). The VNTR regions for genome 

reference GRCh38 were downloaded via UCSC Table brower. 

 

Gene features of SVs 
We annotated detected SVs based on the known protein-coding gene annotation file (gtf) 

corresponding GRCh38 from Ensembl. We detected the intersection of SVs using BEDTools. 

Promoter was defined as the 1 kb region directly preceding the transcription start site of gene. 

We predicted Loss-of-Function (pLoF) SVs as follows: (1) DEL: overlap with at least one CDS; 
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(2) INS: insertion directly into any CDS; (3) DUP and INV: partially overlap with at least one 

CDS. In addition, INV and DUP were generally long, we hence defined DUP and INV that 

covered the whole-gene as WDUP and WINV, respectively23. We did not consider WDUP and 

WINV as gene-disruptive SVs, although we cannot rule out the possibility that they might 

enhance or regulate gene expression via duplication or cis-action. In addition, we labeled SVs 

as UTR-disruptive if at least one breakpoint was in 5’ or 3’ UTR and this SV was not intersected 

with CDS. Then we labeled SVs as promoter-disruptive if at least one breakpoint was in 

promoter of a gene and this SV was not intersected with CDS and UTR. We labeled SVs as 

intron-disruptive if both breakpoints were in same gene and this SV did not meet any of the 

above criteria. Ultimately, the remaining SVs that were not intersected with any protein-coding 

gene region (including promoter) was labeled as intergenic. 

 

Enrichment analysis of pLoF SVs and associated genes 
For enrichment analysis of each gene feature annotation of SVs, the expected value was defined 

as the SV number in gene feature divided by the total number of SVs in population, and the SV 

number in certain category of this feature divided by the total number of SVs in this category 

was considered as observed value. The Fisher’s exact test was conducted in R24 v3.5.3 

(http://www.R-project.org/). To assess functions and associated pathways of pLoF SVs, we 

performed enrichment analysis using GSEApy v0.9.16 (https://github.com/zqfang/GSEApy). 

The annotation files, including GO_Molecular_Function_2018, KEGG_2019_Human, 

GWAS_Catalog_2019, OMIM_ Expanded,    were downloaded from  the Enrichr25 website 

(https://amp.pharm.mssm.edu/Enrichr). The p value was calculated with Fisher’s exact test, 

and multiple testing of p values were corrected by Benjamini-Hochberg method26. 

 

Population stratification and differentiation analysis 
To assess the population stratification between northern or southern Chinese sub-populations, 

we performed principal component analysis (PCA) using EIGENSOFT27 v7.2.1. Previous 

study indicated that distinctly defined population structure was uncovered by DELs in 

comparison with other type SVs18, such as INSs or DUPs. Therefore, 56,544 DELs was used 

to estimate population stratification after filtering out DELs uniquely existing in southwest 

Chinese in this study. Fst between northern and southern Chinese sub-populations was 

estimated based on SVs of the individuals with self-reported ancestry information. The 

Hudson’s estimator Fst ((Ht - Hs) / Ht)28 between northern and southern Chinese was calculated. 

Ht indicates heterozygosity between subgroups, Hs indicates average heterozygosity within 
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subgroups. Here Ht = (p1+p2)*(2-p1-p2)/2, Hs = p1*(1-p1) + p2*(1-p2), p1 and p2 indicate the 

allele frequency in two sub-groups, respectively. We used a permutation approach to estimate 

the significant threshold of observed Fst values. For northern Chinese, 52 individuals from 

provinces with high-latitude (Jilin, Liaoning, Heilongjiang, Neimenggu, Ningxia and Qinghai) 

were selected. To determine the significant threshold of Fst, individuals (198 southern Chinese 

and 52 northern Chinese) from the two groups were randomly split into two sets of the original 

size for 1,000 times. The max Fst values across all permutations were recorded and finally 

arranged in descending order. The five percentile Fst value (0.066) of ranked values was the 

empirical genome-wide significance threshold for the overall significance level of α= 0.0529. 

Manhattan plot was performed using modified script based on qqman (https://github.com/ 

stephenturner/qqman). 

 

Genotype-phenotype association analysis 

The 29,510 SVs with minor allele frequency (MAF) larger than 0.05 in 327 individuals with 

clinical phenotypes were used for the analysis. The genome-wide association study (GWAS) 

was performed using PLINK30 v1.90b4 with linear regression under an additive genetic model 

for the quantitative traits, and age, sex, body mass index (BMI), and the first two principal 

components were included as covariates. When applying BMI GWAS, BMI itself was excluded 

from covariates. The association test for case-control was conducted using logistic regression 

module. We set the genome-wide significance threshold as 5×10-8, and the significance 

threshold was set to be 1.7×10-6 through Bonferroni correction (0.05/29,510)31.  

 

Visualization of SVs with long-reads 

Visualization of detected SVs was performed using Integrative Genomics Viewer (IGV)32 

v2.8.6 which was specially updated for viewing variants of long-read. For target SVs, 

parameter “Link supplementary alignments” was selected to clearly identify heterozygous SVs 

based on the split reads. For INVs, the linked long reads with different colors (red and blue) 

indicated different strands when aligning to reference genome. 
 
Statistical analysis 
The statistical tests used were described throughout the article and in the figures. The one-

tailed Student’s t test was performed to compare the clinical phenotype level between different 

genotypes of genes. We performed FDR correction (https://www.sdmproject.com/ 

utilities/?show=FDR) for multiple comparisons. The enrichment analysis of singletons for 
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different gene location was conducted by Fisher’s exact test. Benjamini-Hochberg corrected of 

P value was used for multiple test analysis. Pearson correlation coefficient was estimated for 

correlation analysis. All statistical tests were performed in R24 v3.5.3 (http://www.R-

project.org/). In the boxplots, the upper and lower hinges represented the first and third quartile. 

The whiskers extended to the most extreme value within 1.5 times the interquartile range on 

either end of the distribution. The center line represented the median. 

 

REFERENCE 
1. De Coster, W., D'Hert, S., Schultz, D.T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and 

processing long-read sequencing data. Bioinformatics 34, 2666-2669 (2018). 
2. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100 

(2018). 
3. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-9 (2009). 
4. Pedersen, B.S. & Quinlan, A.R. Mosdepth: quick coverage calculation for genomes and exomes. 

Bioinformatics 34, 867-868 (2018). 
5. Beyter, D. et al. Long read sequencing of 1,817 Icelanders provides insight into the role of structural 

variants in human disease. bioRxiv (2019). 
6. Sedlazeck, F.J. et al. Accurate detection of complex structural variations using single-molecule 

sequencing. Nat Methods (2018). 
7. Tham, C.Y. et al. NanoVar: accurate characterization of patients' genomic structural variants using 

low-depth nanopore sequencing. Genome Biol 21, 56 (2020). 
8. Cretu Stancu, M. et al. Mapping and phasing of structural variation in patient genomes using 

nanopore sequencing. Nat Commun 8, 1326 (2017). 
9. Amir Ben-Dor, R.S., and Zohar Yakhini. Clustering Gene Expression Patterns. Journal of 

Computational Biology 6(1999). 
10. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. 

Bioinformatics 26, 841-2 (2010). 
11. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32, D493-6 (2004). 
12. Audano, P.A. et al. Characterizing the Major Structural Variant Alleles of the Human Genome. Cell 

176, 663-675 e19 (2019). 
13. Pedersen, B.S. et al. Effective variant filtering and expected candidate variant yield in studies of 

rare human disease. bioRxiv (2020). 
14. Hickey, G. et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome 

Biol 21, 35 (2020). 
15. You, F.M. et al. BatchPrimer3: a high throughput web application for PCR and sequencing primer 

design. BMC Bioinformatics 9, 253 (2008). 
16. MacDonald, J.R., Ziman, R., Yuen, R.K., Feuk, L. & Scherer, S.W. The Database of Genomic Variants: 

a curated collection of structural variation in the human genome. Nucleic Acids Res 42, D986-92 
(2014). 

17. Collins, R.L. et al. gnomAD-SV an open resource of structural variation for medical and population 
genetics. (2019). 

18. Almarri, M.A. et al. Population Structure, Stratification, and Introgression of Human Structural 
Variation. Cell (2020). 

19. Kuhn, R.M., Haussler, D. & Kent, W.J. The UCSC genome browser and associated tools. Brief 
Bioinform 14, 144-61 (2013). 

20. Hubley, R. et al. The Dfam database of repetitive DNA families. Nucleic Acids Res 44, D81-9 (2016). 
21. Bao, W., Kojima, K.K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

genomes. Mob DNA 6, 11 (2015). 
22. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 

27, 573-580 (1999). 
23. Collins, R.L. et al. A structural variation reference for medical and population genetics. Nature 581, 

444-451 (2020). 
24. Team, T.R.C. R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. (2020). 
25. Kuleshov, M.V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 

update. Nucleic Acids Res 44, W90-7 (2016). 
26. Yoav Benjamini, Y.H. Controlling The False Discovery Rate - A Practical And Powerful Approach 

To Multiple Testing. J. Roy. Stat. Soc. B Met. 57, 289 - 300 (1995). 
27. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide 

association studies. Nat Genet 38, 904-9 (2006). 
28. Bhatia, G., Patterson, N., Sankararaman, S. & Price, A.L. Estimating and interpreting FST: the impact 

of rare variants. Genome Res 23, 1514-21 (2013). 
29. Asif, H. et al. GWAS significance thresholds for deep phenotyping studies can depend upon minor 

allele frequencies and sample size. Mol Psychiatry (2020). 
30. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage 

analyses. Am J Hum Genet 81, 559-75 (2007). 
31. Sungwon Jeon, Y.B., Yeonsong Choi, Yeonsu Jeon, Seunghoon Kim, Jaeyoung Jang, Jinho Jang, 

Asta Blazyte, Changjae Kim, Yeonkyung Kim, Jungae Shim, Nayeong Kim, Yeo Jin Kim, Seung Gu 
Park, Jungeun Kim, Yun Sung Cho, Yeshin Park, Hak-Min Kim,  & Byoung-Chul Kim, N.-H.P., Eun-
Seok Shin, Byung Chul Kim, Dan Bolser, Andrea Manica, Jeremy S. Edwards, George Church, Semin 
Lee, Jong Bhak. Korean Genome Project: 1094 Korean personal genomes with clinical information. 
Sci. Adv., eaaz7835 (2020). 

32. Robinson, J.T., Thorvaldsdottir, H., Wenger, A.M., Zehir, A. & Mesirov, J.P. Variant Review with the 
Integrative Genomics Viewer. Cancer Res 77, e31-e34 (2017). 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 
 

 
 

Structural variants in Chinese population and their impact on 
phenotypes, diseases and population adaptation 

 
 

Zhikun Wu, Zehang Jiang, Tong Li, Chuanbo Xie, Liansheng Zhao, Jiaqi Yang, Shuai Ouyang, 

Yizhi Liu, Tao Li, Zhi Xie 

 

 

 

 

 

 

 

 

 

 

Supplementary Figures and Tables 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Contents 
Supplementary Figure 1. Quality control of long-reads ................................................................ 39 
Supplementary Figure 2. Workflow of SV calling and filtering ................................................... 40 
Supplementary Figure 3. SV distribution across meta-chromosome ............................................ 41 
Supplementary Figure 4. Length distribution for DELs and INSs ................................................ 42 
Supplementary Figure 5. SV numbers of different types in each SV category ............................. 43 
Supplementary Figure 6. The total number of discovered SVs as a function of number of samples 
used for detection ........................................................................................................................... 44 
Supplementary Figure 7. GO enrichment analysis for pLoF SVs associated genes ...................... 45 
Supplementary Figure 8. Length distributions of pLoF SVs with different categories ................. 46 
Supplementary Table 1. Summary of sample information and sequencing statistics .................... 47 
Supplementary Table 2. Summary of clinical traits ....................................................................... 47 
Supplementary Table 3. SV statistics of different filtering processes for each sample ................. 47 
Supplementary Table 4. Accumulative lengths of different type SVs for each sample ................ 47 
Supplementary Table 5. Annotation of repeat sequences in SVs .................................................. 47 
Supplementary Table 6.  Summary of PCR validation results of singletons ................................. 47 
Supplementary Table 7. SVs and associated genes in GWAS, OMIM and COSMIC datasets .... 47 
Supplementary Table 8. Association for SVs and clinical phenotypes ......................................... 47 
Supplementary Table 9. Information of SVs with significant Fst (> 0.066) between Southern and 
Northern Chinese ........................................................................................................................... 47 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430378
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

 
Supplementary Figure 1. Quality control of long-reads 

a, Read depth distribution of clean data for 405 individuals. 

b, Distribution of the average read length for 405 individuals. 
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Supplementary Figure 2. Workflow of SV calling and filtering 
a, Workflow of SV calling and filtering for each sample. 
b, SV numbers of different callers for reads of different coverages, “Combine” means SVs detected 

by at least two callers. The threshold of read support of SVs is 0.2 of sequencing depth. 
c, Distribution of final high-confidence SVs of all the individuals. 
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Supplementary Figure 3. SV distribution across meta-chromosome 
SV number across the normalized meta-chromosome for DEL (a), INS (b), DUP (c) and INV (d). 
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Supplementary Figure 4. Length distribution for DELs and INSs 
SV distribution of DELs and INSs for range of 50 bp to 1 kp (a) and range of 1 kb to 10 kb (b). 

Two noticeable peaks were observed at sizes around 300 bp and 6 kb. 
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Supplementary Figure 5. SV numbers of different types in each SV category 
SV number for different types of each SV category, the number on the bar graph indicates the 
actual number of SVs. 
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Supplementary Figure 6. The total number of discovered SVs as a function of number of 
samples used for detection 
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Supplementary Figure 7. GO enrichment analysis for pLoF SVs associated genes 
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Supplementary Figure 8. Length distributions of pLoF SVs with different categories 
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