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Abstract 
Transcription factors (TFs) regulate gene expression by specifically binding to DNA 
targets. Many factors have been revealed to influence TF-DNA binding specificity. 
Coevolution of residues in proteins occurs due to a common evolutionary history. 15 

However, it is unclear how coevolving residues in TFs contribute to DNA binding 
specificity. Here, we systematically analyzed TF-DNA interactions from 
high-throughput experiments for seven TF families, including Homeobox, HLH, 
bZIP_1, Ets, HMG_box, zf-C4 and Zn_clus TFs. Based on TF-DNA interactions, we 
detected TF subclass determining sites (TSDSs) defining the heterogeneity of DNA 20 

binding preference for each TF family. We showed that the TSDSs were more likely to 
be coevolving with TSDSs than with non-TSDSs, particularly for Homeobox, HLH, Ets, 
bZIP_1 and HMG_box TF families. Mutation of the highly coevolving residues could 
significantly reduce the stability of TF-DNA complex. The distant residues from the 
DNA interface also contributed to TF-DNA binding activity. Overall, our study gave 25 

evidence of the functional importance of coevolved residues in refining transcriptional 
regulation and provided clues to the application of engineered DNA-binding domains 
and protein. 
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Introduction 30 

Transcription factors (TF) regulate gene expression spatiotemporally by binding to 
regulatory elements of promoter regions of targeting genes and play a central role in 
genetic activity and human physiology [1, 2]. Decoding DNA binding specificity of TFs 
is a key to understand the underlying mechanisms of transcriptional regulation of 
gene expression. Many variables have been revealed to influence the TF-DNA 35 

readout on multiple levels, including nucleotide sequence, tertiary structure, TF 
co-factors, nucleosome occupancy and chromatin accessibility. 

Previous studies have provided many important insights into the modes 
regarding specific DNA recognition by TFs. Studies on TF-DNA structures showed 
that the preference of a nucleotide at a specific position was largely determined by 40 

physical interactions between residues of TFs and base pairs of DNAs, which is also 
called “base-readout” [3]. For example, ZBTB member ZBTB24 protein interacts with 
DNA exclusively in the major groove of one 13-bp consensus motif by formation of 
direct hydrogen bonds and mutation of residues in DNA binding domain would 
weaken or even lose its DNA binding ability [4]. In addition, TFs could also recognize 45 

sequence-dependent DNA structure, such as DNA bending, which is known as 
“shape-readout” [5]. For example, yeast bHLH TFs Cbf1 and Tye7 bind DNA targets 
with differential preference for the genomic regions flanking E-Box sites according to 
DNA shape of binding sites [6]. Another example is Homeodomain TFs Hox-Exd-Hth 
trimer which prefers DNA sequences with a complex DNA shape that includes 50 

optimally spaced minor groove width minima [7]. In the last decade, sequence-based 
high-throughput technologies to measure protein DNA-binding specificities have 
revolutionized our ability to measure TF-DNA specificity. The methods based on 
microarray assays such as protein-binding microarray (PBM) [8, 9], and sequencing 
assays such as bacterial one-hybrid (B1H) system [10], high-throughput systematic 55 

evolution of ligands by exponential enrichment (HT-SELEX) [11] and SELEX-seq [12], 
enabled large-scale screening of DNA binding preferences of TFs. These studies 
generally showed that similar TF domains tended to have similar DNA binding sites 
and different TF members had distinct core binding sites or flanking sequences [9, 
13-15]. Nevertheless, many TFs were found to present multiple binding motifs, which 60 

makes understanding of the determinants of binding specificity more challenging. 
While there is no simple code to specify the interaction of TF and DNA, 

coevolution of residuals in TFs may help understand factors contributing to TF-DNA 
binding specificity. The phenomenon that residues in one site change depending on 
the residues of another site is called “coevolution of residues” [16]. The simultaneous 65 

changes in residues have been proven useful for analyzing protein constraints to 
maintain structural and functional integrity to acquire specific functional necessities 
[17], understanding protein-protein interaction networks [18, 19], predicting alternative 
structural conformations and flexibility [20-23] or discovering functional residues that 
play important roles in catalytic activity and binding affinity of a protein [24, 25]. 70 

Regarding coevolving constraints in TF activity, integration of coevolving relationship 
between TF residues and DNA binding sites could improve prediction of substrate 
specificity [26-28]. 

Despite previous studies suggested that coevolving residues may pose structural 
and functional constraints in several other protein families, whether and to what extent 75 
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coevolving residues in TF domains contribute to DNA binding specificity is unclear. In 
this study, we evaluated the effects of coevolving residues in DNA binding domains of 
TFs on their DNA binding specificity. We systematically collected TF-DNA interactions 
from high-throughput experiments for nine TF families, including Homeobox, HLH, Ets, 
HMG_box, Fork_head, bZIP_1, Zn_clus, zf-C4 and zf-C2H2. For each TF family, we 80 

defined TF domain sites accounting for TF subclass determining sites (TSDSs). 
Coevolution analyses revealed that the TSDSs coevolved more frequently with 
TSDSs than with non-TSDSs. Moreover, we found that some coevolving residues with 
TSDSs were spatially distant from the DNA interface but impacted stability of TF-DNA 
complex upon mutation. Our study showed that evolution of residues in TFs played an 85 

important role in contributing DNA binding specificity of TFs. 
 
Materials and methods 
Data collection and processing 
We collected TF-DNA interactions obtained with high-throughput technologies (Table 90 

S1) for several major species including mouse (Mus musculus), human (Homo 
sapiens), fruit fly (Drosophila melanogaster), yeast (Saccharomyces cerevisiae) and 
C. elegans (Caenorhabditis elegans). ChIP-Seq based experiments were not included 
because of possible confounding raised by TF partners. DNA motifs were presented 
using position weight matrices (PWMs) [29]. DNA motifs for each TF family were 95 

aligned and merged with ‘DNAmotifAlignment’ from motifStack package [30]. TF 
domain sequences were defined based on the Pfam database [31]. The similarity 
between DNA motifs was estimated with MotIV package [32]. Multiple sequence 
alignment (MSA) of TF domain sequences were conducted by MUSCLE (v3.8.31) [33] 
with the constraint of the typical domain sequence or seed sequence obtained from 100 

Pfam database. MSA logos were compared between our collected dataset and the 
Pfam archives (Figure S1, S2).  
 
Identification of TF subclass determining sites (TSDSs) of TF. 
Each TF family was grouped into subclasses by hierarchical clustering analyses 105 

based on the pairwise similarity of DNA motifs. Elbow method was used to determine 
TF clusters. The clusters with within-cluster sum of square lower than 10% of that of 
the starting cluster without partition were used. The subclasses containing <5 TFs 
were excluded for the further analysis. Specificity Prediction using amino acid’s 
Properties, Entropy and Evolution Rate (SPEER) [34], a popular algorithm to identify 110 

protein subclass specific sites, was used with the TF clustering relationship as input. 
In SPEER runs, we assigned equal weights to relative entropy, Euclidean distance, 
and evolutionary rate of input MSA. The MSA columns with 100% identity in all TF 
sequences were excluded since they were unlikely to be related to specificity. The 
residues with p-value <0.1 were defined as TSDSs in our analyses.  115 

 
Coevolution analyses of residues 
Coevolution analyses of residues were performed using TF domain MSA collected 
from the Pfam database. Four different algorithms were applied including mutual 
information (MI) [35], MIp [36], statistical coupling analysis (SCA) [37] and OMES [38]. 120 

Specifically, MI measures the reduction of uncertainty in one position by considering 
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the information of the other, thus quantifying between-residues co-variation; MIp is an 
adjusted MI by removal of background phylogenetic signal of MSA; SCA measures 
statistical interactions between amino acid positions to map energetic interactions; 
OMES detects differences between observed versus expected frequencies of residue 125 

pairs. All these algorithms were performed using the Evol module of ProDy [39]. 
Coevolution scores from four algorithms were combined as following: score values 
between residue pairs from each method were rescaled by formula ��� � �����/

����� � �����, thereinto, xi, xmin and xmax indicated the score for the i-th pair, the 
minimal and the maximal score respectively; rescaled scores were subjected to 130 

quantile normalization; normalized score for each residue pair was then averaged.  
Coevolution scores were compared between the groups by Wilcoxon tests, and 

false discovery rate (FDR) was used to correct the p-values from multiple testing. P 
value of 0.05 was taken as the cutoff of statistical significance. The coevolving 
network for each TF family was constructed by taking the residue positions in the MSA 135 

as nodes and coevolving relationship as edges. Network analyses and visualization 
were conducted with igraph (https://igraph.org/). The fast-greedy modularity 
optimization algorithm was used to detect community structure [40]. To estimate the 
effects of coevolution on DNA binding specificity, we calculated the similarity scores 
between the DNA motifs corresponding to TFs containing specific amino acid pair 140 

within the CRPs. The DNA motif similarity scores were then summed up using the 
ratio of specific amino acid pair as weight vector. 
 
TF-DNA complex structure analyses and computational mutation analyses 
TF-DNA structures were firstly collected from the Pfam database. We then 145 

downloaded the structures with a resolution <4Å and containing both amino acid and 
DNA chains from the PDB database (http://www.rcsb.org) [41]. All amino acid chains 
in PDB structures were included and aligned to the same reference sequence. The 
distances between protein residues and/or nucleotide were defined using the shortest 
Euclidean distance between atoms contained in the TF-DNA structure. TF-DNA base 150 

contacting and stability of TF-DNA complex upon mutation of amino acid or DNA base 
were predicted with the protein design tool FoldX [42]. The PDB structures were firstly 
repaired with the RepairPDB command. Next, phenotypes of DNA mutant were 
predicted with ‘DNAScan’ command, and that of protein residue mutant were 
predicted with ‘BuildModel’ command. Foldx simulations were performed for each 155 

mutant five-times to increase the conformational space explored, and the averages 
were reported. Visualization of TF-DNA complex was conducted with Edu PyMol (The 
PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC.). 
 
Results 160 

Characterization of TF binding specificity 
To comprehensively analyze DNA binding specificity of TFs, we collected the publicly 
available datasets from high-throughput TF-DNA experiments including PBM, B1H or 
SELEX technology (Materials and methods; Table S1). By a unified data processing 
strategy, we obtained high-quality DNA motifs for 1,179 TFs from mouse, human, fruit 165 

fly, yeast, and C. elegans. We discarded the TF families with <30 TF members and 
finally included DNA binding motifs of 903 TFs in our analysis. These TFs came from 
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nine major TF families where homeobox, zf-C2H2 and HLH were the three largest 
families (Figure 1A). All these nine TF families were among the top 10 major TF 
families in animal genomes according to the AnimalTFDB database [43]. Except for 170 

Zn_clus family, all the other TF families contained TFs from multiple species. In total, 
around 85% of TFs were from mouse, human and fruit fly (Figure 1A). In average, 
around 35.8% of TFs for each family were also found in JASPAR database, which 
showed high similarity with the annotated ones with a Pearson correlation > 0.9 for 
each family in average (Figure 1B). Moreover, some TFs showed nearly identical core 175 

binding sites comparing with JASPAR collection, such as NFE2, FOXO3, USF1, and 
YY1 (Figure 1B). These results suggested the reliability of the datasets.  

Aligning DNA motifs for each TF family converged to consensus motifs (Figure 
1C). While the degenerated DNA motifs showed distinctive DNA binding sites 
between TF families, these merged DNA motifs for most families showed changed 180 

relative frequency of nucleic acids at core binding sites, suggesting heterogeneity of 
DNA binding sites in the same TF family. We next calculated inter-motif similarity 
scores for all pairs of DNA motifs for each TF family. For most TF families including 
bZIP_1, HMG_box, Homeobox, zf-C2H2, zf-C4 and Zn_clus, the similarity of DNA 
motifs between TFs varied in a wide range (Figure 1D), indicating common variability 185 

in DNA binding sites of TFs even within the same family, consistent with the motif 
alignment results. Particularly, the similarity of DNA binding sites in zf-C2H2 TFs were 
significantly lower than the other TF families. Considering TF-DNA interactions we 
included were from multiple species, the variations of binding preference in a TF 
family could be caused by difference among species, we further examined the 190 

similarity of binding sites within each family for each individual species. A similar 
pattern was observed (Figure 1E). In addition, we explored whether the variation 
between DNA motifs was affected by the number of motifs included by calculating 
spearman correlation scores between inter-quantile range (IQR) of between-motifs 
similarity and motif numbers for each TF family in each species. For all TF families, no 195 

significant associations between higher IQR and motif numbers were observed, which 
suggested that the higher variation in between-motifs correlation was unlikely caused 
by greater number of motifs (Figure 1F). There results together demonstrated that 
DNA binding preference was divergent between different TF families and even TFs 
within the same TF family exhibited different degrees of heterogeneity in DNA binding 200 

specificity. 
 
Identification of TF subclass determining sites (TSDSs) 
We next sought to determine the TSDSs of TFs based on their DNA binding site 
patterns. For each TF family, we firstly divided TF members into different subclasses 205 

based on the similarity of DNA motifs (Materials and Methods). We noticed that the 
zf-C2H2 contained more than 20 subclasses which made the number of TF members 
in the subclasses too small, which was consistent with the observation in another 
recent systematic analysis on TFs [44]. This is because that zf-C2H2 TFs usually 
contain multiple copies of DNA binding domain, which bind DNA as an array which 210 

allows these TFs to recognize new binding sites [1, 45]. On the other hand, the 
Forkhead TFs had high similarity between DNA motifs, where only one subclass was 
identified. We therefore discarded these two TF families from further analysis.  
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The remaining seven TF families were sub-grouped based on the diverged core 
or flanking sequences of binding targets. Of note, we identified TSDSs or major TF 215 

subclasses consistent with previous studies on Homeobox, HLH, Ets, HMG_box, and 
bZIP_1 TFs (Figure 2). The TSDSs for zf-C4 and Zn_clus TFs are shown in Figure S3. 
62% Homeobox TFs bind typical DNA motif ‘TAAT’ [46]. The residue positions 53, 46, 
49, 54 and 25 in the Homeobox domain were identified to be associated with different 
DNA motifs. Among these five sites, four positions (53, 46, 49, and 54) were on the 220 

recognition helix. Moreover, the residue 49 had been experimentally proved to be 
crucial in TF-DNA binding specificity by mutation assays [47]. For the HLH family, 
almost all the included TFs preferred to recognize DNA sequence ‘CANNTG’, known 
as “E-box” [48]; but four positions (5, 8, 13 and 14) on the HLH domain correlated with 
different forms of E-box, consistent with previous studies. For example, Arg13R was 225 

used to specify CACGTG motif, in line with the inference by half-sites-based analysis 
[49]. For Ets TFs, our analysis revealed that five amino acid positions (31, 51, 53, 61, 
and 76) correlated with DNA binding specificity where the positions 51 and 53 were on 
helix-3 of the domain and the position 76 was on strand-4 [50]. For HMG_box TFs, 
five amino acid positions (19, 20, 23, 27, and 49) were found to be associated with 230 

DNA motifs clusters where the positions 19, 20, and 23 were on alpha helix 1, and the 
position 27 was at the N terminus of alpha helix 2, known as typical structures of 
HMG-box domain [51]. For bZIP_1 TFs, seven amino acid positions (4, 8, 14, 17, 18, 
20, and 31) correlated with DNA motif clusters where the positions 17 and 20 were 
reported to be signature for DNA recognition [52]. These results together indicated 235 

that our analysis revealed reliable relationship between TF subclass and their specific 
DNA binding activity.  

We further found that DNA specificity usually correlated with more than one 
TSDS positions. For example, our results revealed that DNA specificity of Homeobox 
TFs was not limited to the well-studied amino acid position 49, the residues 53R and 240 

49Q were observed in different TF subclasses corresponding to DNA motif clusters. 
Take HLH TFs as another example, 13R and 8R also appeared to be mutually 
exclusive, and combinations of 8R and the amino acid at the other positions 
accounted for the divergence of non-canonical E-box, such as CATGTG and 
CAGGTG. These results suggested that TSDS combination could predict DNA 245 

binding targets more accurately, and TSDS positions tended to covary in terms of 
amino acid composition. 
 
Coevolving residue pairs (CRPs) and TSDSs 
Correlated mutations or covariation between residues were thought to be suggestive 250 

of coevolution [53], we next explored whether and to what degree these TSDSs 
coevolved corresponding to DNA binding specificity. To this end, we collected protein 
sequence alignments of various species from the Pfam database. These protein 
sequences were re-aligned to the same seed sequence for each TF family. We 
developed an ensemble strategy by applying multiple methods including MI, MIp, SCA 255 

and OMES to detect reliable CRPs (Materials and Methods). For each method, CRP 
candidates were defined as the top 10% residue pairs according to the estimated 
measurements. In general, MI, MIp and OMES yielded moderately to highly 
consistent results with Jaccard similarity coefficients ranging between 0.43~0.83, 
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while SCA measurement weakly correlated with all the other methods (Figure S4), 260 

consistent with a benchmarking study on coevolution methods [54].  
CRPs were further defined with the candidates identified by at least two methods 

for each TF family (Table S2). We observed CRPs between TSDSs and/or 
non-TSDSs. As non-TSDSs accounted for most of the residues in TF domains, 
around 81% CRPs were among non-TSDSs in average while around 2.7% CRPs 265 

were among TSDSs in Homeobox, HLH, bZIP_1, Ets, and HMG_box TFs (Figure 3A). 
Interestingly, in these five TF families, we found that TSDSs tended to be more 
frequently coevolving with TSDSs, revealed by network-based community analysis 
showing that our identified TSDSs were usually clustered together (Figure 3B; S5). To 
understand the influence on the DNA binding specificity of CRPs, we compared the 270 

similarity of DNA motifs of TFs grouped by CRPs or by non-CRPs (Materials and 
Methods). Interestingly, we found that TFs grouped by CRPs had higher degree of 
DNA motif similarity than that by non-CRPs in the six TF families out of seven we 
tested, except for Ets TFs (Figure 3C), suggesting that the CRPs were related to 
similar DNA binding activities. 275 

    We next examined whether the CRPs were adjacent in the sequence of amino 
acids, known as blocks that were considered to be important for protein evolution [55]. 
We found that more than half of the CRPs were between residues more than five 
positions apart from each other in the alignment of six TF families, except for the 
Zn_clus TFs (Figure S6). By defining the residue blocks (Table S3), we further found 280 

that as high as 75% CRPs were between different blocks in bZIP_1, Ets, HLH, 
HMG_box, Homeobox, and zf-C4 TFs, while the out-of-block coevolution only 
accounted for ~15% CRPs in Zn_clus TFs (Figure 3D), suggesting that the CRPs 
were not always continuous in TF domain sequence positions. 
 285 

CRPs and TSDSs in TF-DNA complex 
In addition to residue blocks conveying coevolution constraints, it is known that TF 
residues located in the TF-DNA interface are also likely to impact DNA binding [45]. 
We therefore sought to understand how these CRPs and TSDSs locate in the TF-DNA 
complex. We totally collected 178 available TF-DNA complexes (Table S4) from the 290 

PDB database for seven TF families, of which the side chains containing DNA binding 
domains were aligned individually. Mapping TF domain residues to these 3D 
structures, we estimated the spatial distance of all pairs of residues in the TF domain 
(Materials and methods). As expected, the CRPs located closer in 3D structures than 
the non-CRPs for all the TF families (T-test, p<10-8 for all TF families; Figure S7). 295 

Nevertheless, we noticed that around 31% of CRPs in average across all seven 
families had a spatial distance >10�, consistent with previous findings that not all the 
coevolving residues were close in the 3D structures [56]. We next analyzed whether 
each residue in CRPs was close to the TF-DNA interface that could present a 
constraint on their coevolution. Comparing the distance to DNA interface of each 300 

residue in a pair of coevolving residues, we found that in all seven TF families, the 
percentages of CRPs that had at least one residue far away from the DNA interface 
(f-CRPs), with a distance >10�, ranged from 18.6% to 67.5%, with a median of 33.3% 
(Figure 4A), suggesting a heterogeneous relationship between coevolving residues of 
TF domain and DNA binding activity in different TF families. Among these f-CRPs, 305 
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most were between non-TSDSs while several were between TSDSs and non-TSDSs 
in Homeobox, HLH, Ets, bZIP_1 and HMG_box TFs. Of note, the distance to DNA of 
the TF residue off the interface varied in a wide range, as far as > 50� in bZIP_1 TFs 
(Figure 4A). 

To analyze how the residues in f-CRPs impacted DNA binding, we estimated the 310 

changes of interaction energy (ΔΔG) upon mutation of these residues in TF-DNA 
structures (Materials and Methods). We conducted in-silico modeling with mutation 
analyses on selected f-CRPs from representative PDB structures (PDB: 1IG7 for 
Homeobox, PDB: 2YPB for HLH, PDB: 4MHG for Ets, PDB: 2E42 for bZIP_1 and 
PDB: 3U2B for HMG_box) from the five families in which we identified known TSDSs 315 

(Figure 4B). Each CRP was between TSDS and non-TSDS (Figure 4A), thus we could 
compare the impact of mutations of TSDS and non-TSDS on TF-DNA binding activity. 
We also conducted mutation analysis of highly conserved amino acid sites in these TF 
families and compared with that of CRPs. We found that mutations of highly 
conserved residues induced significantly higher ΔΔG than the other tested mutations 320 

in five out of six TF families including Homeobox, HLH, Ets and HMG_box (Figure 4C). 
Of note, we found that mutant of non-TSDS residue off the DNA interface induced 
significantly higher ΔΔG than that of TSDS residue close the DNA interface in 
Homeobox, HLH, bZIP_1 and HMG_box TFs (Wilcoxon test, all p<0.1). In addition, in 
Ets TFs, mutation of either TSDS or non-TSDS induced a ΔΔG>2 kcal/mol, which was 325 

generally thought to be enough to completely disrupt the DNA binding capabilities [49]. 
These results together demonstrated the biological effects on DNA binding of 
coevolving TF residues, even for those spatially distant residues from the DNA 
interface. 
 330 

Discussion  
In this study, we conducted a comprehensive and integrative analysis of coevolution 
of residues in TFs and their DNA binding motifs for seven TF families. We provided 
evidence showing that coevolving residues in TF domains contributed to DNA binding 
specificity. We demonstrated that the TSDSs were more likely to be coevolved with 335 

TSDSs than with non-TSDSs. Mutation of the CRPs could significantly reduce the 
stability of TF-DNA complex and even the distant residues from the DNA interface 
contribute to TF-DNA binding activity.  

Our analysis identified multiple TSDSs consistent with the known determinants in 
five out of seven TF families, including Homeobox, HLH, Ets, bZIP_1 and HMG_box 340 

TFs. We recovered the specific patterns of DNA binding site for several known TSDSs. 
We also noticed that our TSDSs did not recover all the known amino acid sites related 
to DNA binding specificity, such as the flexible N-terminal arm of homeodomain which 
can show base-specific contacts with the minor groove via conserved arginine in this 
region [57]. The reasons could be that our analyses were based on monomers of DNA 345 

binding domains and our analyses excluded highly conserved residues from the 
domain MSA profiles. Further studies will be conducted by integrating complex 
interaction between TF domains such as homodimers and heterodimers of TFs. 

We showed the importance of coevolving residues in structural integrity and DNA 
binding specificity of TFs with in-silico mutation analysis on representative TF-DNA 350 

structures from five TF families. Notably, our analysis revealed the residues distant 
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from the DNA interface but showing considerable impacts on DNA binding 
compatibility upon mutation. For example, the residue LEU324 in CEBPB protein is 
distant from the bound DNA but can make the DNA binding complex incompatible 
upon mutation to the other amino acid types (Figure 4). This may be part of the reason 355 

to those coevolving residues in TF domains but not contacting with each other.  
To sum up, our studies expand our knowledge on the interaction between 

coevolved residues in TFs, tertiary contacting, and functional importance in refined 
transcriptional regulation. Understanding the impact of coevolving residues in TFs will 
help understand the details of transcription of gene regulation and advance the 360 

application of engineered DNA-binding domains and protein. 
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Main Figures 

 

 

Figure 1 Characterization of TF binding specificity. 
A, Overview of TF families: (Upper panel) Stacked bar plots showing TF numbers for 380 

each TF family where relative percentages of TF in different species are shown with 
different colors. (Below panel) Pie chart showing total numbers of TF in different 
species. 
B, Boxplot for each TF family (left panel) showing the similarity of overlapped DNA 
motifs between our included data and JASPAR database. Sequence logos of DNA 385 

motifs in JASPAR database (middle panel) and our collected dataset (right panel) of 
representative TF for each family are compared. 
C, Sequence logos of combined DNA motifs in our collected data for each TF family. 
D, Boxplots showing the similarity of DNA motifs between TFs for each TF family. 
E, Boxplots showing the similarity of DNA motifs between TFs in each of five species 390 

for each TF family. 
F, Scatter plot for each TF family showing no correlation between TF numbers and 
DNA motif diversity in five species. Spearman correlation analysis and tests were 
performed. 
  395 
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Figure 2 Identification of TF subclass determining sites (TSDSs). 
Sequence logos of TSDSs (left panel) and corresponding merged DNA motifs (right 
panel) for each TF subclass from five TF families: Homeobox, HLH, bZIP-1, Ets and 400 

HMG_box. The number of members of each subgroup is shown in the parenthesis. 
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 405 

Figure 3 CRPs and TSDSs.  
A, Bar plots showing the fraction of CRPs between TSDSs, between TSDSs and 
non-TSDSs and between non-TSDSs across all TF families. 
B, Representative Network-based partition of coevolving residues in Homeobox. 
Nodes and numbers refer to residue index in TF domain, edges refer to coevolving 410 

relationship. Numbers in red indicate TSDSs. Nodes in different clusters are shown in 
different colored background. 
C, Boxplots showing comparison of DNA motif similarity of TFs grouped by CRPs and 
non-CRPs. (**), p<0.01; (****), p<0.0001. 
D, Bar plots showing the fraction of out-of-block coevolution for each TF family. 415 
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Figure 4 CRPs and TSDSs in TF-DNA complex.  
A, Scatter plots showing comparison of distance to DNA interface of each residue in 
CRPs in Homeobox, HLH, Ets, bZIP_1 and HMG_box TFs. The CRPs from different 
group of residue pairs between-TSDSs (intra), between TSDSs and non-TSDSs 420 

(between) and between-non-TSDSs (extra) are in different colors. For each TF family, 
the percentage of CRPs having at least one residue with a distance>10A to DNA are 
calculated. Representative CRPs between TSDSs and non-TSDSs are highlighted in 
circles and noted with residue index.  
B, Representative PDB structures for Homeobox (1IG7), HLH (2YPB), Ets (4MHG), 425 

bZIP_1 (2E42) and HMG_box (3U2B) families. Representative CRPs shown in panel 
A are highlighted in red spheres and noted with amino acid type and residue ID within 
one side chain containing TF domain.  
C, Boxplots showing the ΔΔG of mutants of indicated residues in selected CRPs by 
comparing with wild type of selected PDB structures in Homeobox, HLH, Ets, bZIP_1 430 

and HMG_box TFs. Side chain of amino acid and residue IDs are used to indicate the 
residue mutant. One-tail Wilcoxon tests were conducted in statistical testing. 
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Supplementary Figures and tables 

Figure S1. Sequence Logos of aligned DNA binding domains in our analysis for 

each TF family. 435 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.445059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.445059
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

Figure S2. Sequence Logos of DNA binding domains for each TF family in Pfam. 

 440 
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Figure S3 TF subgroup determining sites in subfamilies and corresponding 

DNA motifs. 

 

 445 
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Figure S4 Jaccard-based correlation of four coevolution methods. 

 

 450 
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Figure S5. Network of coevolving residues of TF families, related to Figure 3E. 455 
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Figure S6. The coevolving residue distance within MSA profile. 

 460 

  

 

 

Figure S7. Comparing the distance between coevolving residue pairs (CRPs) 

and non-CRPs. 465 
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Table S1. Overview of included TF-DNA interaction assays 

 470 

Source Data type PMID # TFs Description 

Berger_2006 PBM 16998473 4 TFs from yeast, worm, mouse and human 

Berger_2008 PBM 18585359 157 Homeobox proteins in mouse 

Badis_2008 PBM 19111667 110 HLH, bZIP_1, zf, Fork_head, Homeobox in yeast 

Scharer_2009 PBM 19147588 1 HMG_box in human 

Zhu_2009 PBM 19158363 29 bZIP_1, HLH, zf, fork_head, HMG_box in yeast 

Lesch_2009 PBM 19204119 1 Homeobox in C. elegans 

Badis_2009 PBM 19443739 101 HLH, bZIP_1, zf, Ets, fork_head, HMG_box in mouse 

Grove_2009 PBM 19632181 10 HLH in C. elegans 

Jolma_2013 SELEX 23332764 258 HLH, bZIP_1, zf, Ets, fork_head, HMG_box, Homeobox in human 

Weirauch MT_2014 PBM 25215497 932 TFs in Arabidopsis, mouse, C. elegans, human and fly 

FlyFactorSurvey B1H 21097781 297 HLH, zf, bZIP_1, Ets, Homeobox, forkhead TFs in fly 

Wei_2010 PBM 20517297 16 Ets in mouse 
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Table S2 Coevolving residue pairs 

Attached xls file (“S3.highly_coevolved_residues.xlsx”) 
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Table S3 Residue blocks in TF domains 

TF Family coevolving residue positions 

HLH 

[1] "13_14_15_16"          

[2] "1_2_3_4_5_6_7_8_9_10_11_12"      

[3] "19_20_21"          

[4] "29_30_31_32_33_34_35_36_37_38_39_40_41_42_43" 

[5] "45_46_47_48" 

zf-C4 

[1] "3_4_5_6_7_8_9_10_11_12_13_14_15_16_17_18_19_20_21_22_23" 

[2] "30_31_32_33",          

[3] "47_48_49_50_51_52_53_54"         

[4] "54_55_56_57_58_59"           

[5] "37_38_39" 

bZIP_1 

[1] "1_2_3_4_5_6_7"        

[2] "10_11_12"          

[3] "23_24_25_26_27_28_29_30"      

[4] "34_35_36_37_38_39_40_41_42_43_44_45_46_47" 

[5] "53_54_55_56_57_58"       

[6] "58_59_60_61_62_63_64"       

[7] "17_18_19" 

Zn_clus 
[1] "14_15_16_17_18_19"  "1_2_3_4_5_6_7_8_9"    

[3] "24_25_26_27_28_29"  "31_32_33_34_35_36_37_38_39_40" 

Ets 

[1] "30_31_32_33_34_35_36_37"        

[2] "1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_17_18_19_20" 

[3] "23_24_25_26_27"          

[4] "71_72_73_74_75_76_77_78_79_80_81"      

[5] "61_62_63"            

[6] "54_55_56"            

[7] "65_66_67" 

HMG_box 

[1] "17_18_19_20_21_22_23_24_25_26_27_28_29_30_31_32_33"          

[2] "51_52_53_54_55_56_57_58_59_60_61_62"     

[3] "63_64_65_66_67_68_69"         

[4] "1_2_3_4_5_6_7_8_9_10_11_12_13_14_15"       

[5] "45_46_47" 
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Table S4. Representative 3D structures of TF-DNA complex 

TF Family coevolving residue positions 

HLH 
4H10, 1NLW, 1AN2, 1HLO, 1NKP, 4ATI, 4ATK,1MDY, 2QL2, 1A0A, 1AM9, 

2YPA, 2YPB, 1AN4 

zf-C4 

1R4I, 1R0N, 1R0O, 2HAN, 1HCQ, 4AA6, 4HN5, 4HN6, 1GLU, 1LAT, 1R4O, 

1R4R, 3FYL, 3G6P, 3G6Q, 3G6R, 3G6T, 3G6U, 3G8U, 3G8X, 3G97, 3G99, 

3G9I, 3G9J, 3G9M, 3G9O, 3G9P, 3CBB, 4IQR, 4TNT, 1A6Y, 1GA5, 1HLZ, 

1CIT, 2A66, 3DZU, 3DZY, 3E00, 1DSZ, 1BY4, 4CN2, 4CN3, 4CN5, 4CN7, 

4NQA, 1YNW, 2NLL, 3M9E, 1KB2, 1KB4, 1KB6 

bZIP_1 
1H8A, 1H89, 1H88, 1NWQ, 1JNM, 1GU5, 1GU4, 1GTW, 2E43, 2E42, 3A5T, 

2WT7, 2WTY, 4AUW, 1HJC, 1GD2, 2DGC 

Zn_clus 1D66, 3COQ, 1HWT, 1QP9, 2HAP, 2ER8, 2ERE, 2ERG, 1PYI, 1ZME 

Ets 

3JTG, 1DUX, 1BC7, 1BC8, 1HBX, 1K6O, 4IRI, 2NNY, 3MFK, 3RI4, 3WTS, 

3WTT, 3WTU, 3WTV, 3WTW, 3WTX, 3WTY, 3WU1, 4L0Y, 4L0Z, 4L18, 4LG0, 

1K78, 1K79, 1K7A, 1MDM, 4BQA, 4BNC, 4UUV, 4UNO, 4MHG, 3ZP5, 5E8I, 

5JVT, 1AWC, 1YO5, 1PUE 

HMG_box 1QRV, 3NM9, 3F27, 4Y60, 3U2B, 4EUW, 4S2Q, 3TMM, 3TQ6, 4NNU, 4NOD 

Homeobox 

3A01, 3LNQ, 9ANT, 4RDU, 1JGG, 1B8I, 2R5Y, 2R5Z, 4CYC, 4UUS, 4J19, 

2HDD, 2HOS, 2HOT, 1DU0, 1HDD, 3HDD, 1IC8, 2H8R, 1PUF, 1B72, 1IG7, 

1AKH, 1APL, 1MNM, 1YRN, 1K61, 1LE8, 4RBO, 3RKQ, 3CMY, 1AU7, 1CQT, 

2XSD, 3L1P, 3D1N, 1FJL, 4S0H 
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