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A B S T R A C T

Retinoblastoma (RB) is the most common intraocular malignancy in childhood. The causal variants in RB are
mostly characterized by previously used short-read sequencing (SRS) analysis, which has technical limitations in
identifying structural variants (SVs) and phasing information. Long-read sequencing (LRS) technology has ad-
vantages over SRS in detecting SVs, phased genetic variants, and methylation. In this study, we comprehensively
characterized the genetic landscape of RB using combinatorial LRS and SRS of 16 RB tumors and 16 matched
blood samples. We detected a total of 232 somatic SVs, with an average of 14.5 SVs per sample across the whole
genome in our cohort. We identified 20 distinct pathogenic variants disrupting RB1 gene, including three novel
small variants and five somatic SVs. We found more somatic SVs were detected from LRS than SRS (140 vs. 122)
in RB samples with WGS data, particularly the insertions (18 vs. 1). Furthermore, our analysis shows that, with
the exception of one sample who lacked the methylation data, all samples presented biallelic inactivation of RB1
in various forms, including two cases with the biallelic hypermethylated promoter and four cases with compound
heterozygous mutations which were missing in SRS analysis. By inferring relative timing of somatic events, we
reveal the genetic progression that RB1 disruption early and followed by copy number changes, including am-
plifications of Chr2p and deletions of Chr16q, during RB tumorigenesis. Altogether, we characterize the
comprehensive genetic landscape of RB, providing novel insights into the genetic alterations and mechanisms
contributing to RB initiation and development. Our work also establishes a framework to analyze genomic
landscape of cancers based on LRS data.

Retinoblastoma (RB) is the most prevalent eye cancer in children [1].
Without timely diagnosis and treatment, metastasis will happen and RB
will be fatal [2]. RB is generally thought to be caused by the inactivation
of RB transcriptional corepressor 1 (RB1) gene [1]. A comprehensive
understanding of the genetic basis and the underlying mutational
mechanisms is essential for precise diagnosis and effective clinical
treatment.

Previous studies have utilized various approaches, including quan-
titative multiplex PCR (QM-PCR), Sanger sequencing, whole genome/
exome short-read sequencing (WGS/WES)，as well as cloning and
sequencing RB1 cDNAs, to identify germline or somatic single nucleo-
tide variants (SNVs) and small insertions/deletions (InDels), with the
purpose to detect disease causal variants in RB [3–6]. However, previous

technologies have limitations in identifying structural variants (SVs),
methylation, and phasing information, leading to some samples exhib-
iting only one or even no detectable causal mutation in RB [5,7–11]. It is
worth noting that SVs affect larger regions of cancer genomes than any
other type of genetic variants [12], therefore, causative variants may be
underestimated in RB [3].

Unlike traditional methods, long-read sequencing (LRS) technolo-
gies, such as Oxford Nanopore Technologies (ONT) and Pacific Bio-
sciences (PacBio), offer the distinct advantage of directly sequencing
native genome DNA. LRS produces reads up to two megabases (Mb) in
length [13], allowing efficient detection of SVs and providing an insight
into the haplotype context of a given variant. Moreover, ONT platform
enables directly detect DNA methylation during sequencing, which
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overcomes the shortcoming from traditional measurement, such as
damaging DNA during bisulfite conversion and the restricted detection
of short-range methylation patterns using NGS platform [14]. The
increased power of LRS for detecting germline and somatic SVs, as well
as methylation patterns, has been widely demonstrated [15–20]. Despite
the potential use of LRS to study RB, only two studies have been con-
ducted to date, where each study sequenced only one sample. One study
utilized PacBio sequencing to uncover the complex mechanism of RB1
inactivation through the RB1-SIAH3 fusion [21]. The other study used
targeted ONT sequencing to identify missing disease-causing variants in
RB1 [22].

In our study, we utilized both LRS and SRS to sequence 16 pairs of
tumor and matched blood samples to identify various genomic alter-
ations, including SNVs, InDels, SVs and methylations in RB. We detected
more SVs by LRS data, particularly the type of INSs, when compared
with SRS. In addition, LRS data allowed us to simultaneously detect SVs
and methylations to have a comprehensive examination of genomic
variants and discover novel pathogenic variants in RB. Furthermore,
using LRS, we efficiently phased the genomic alterations to determine
the diverse forms of biallelic RB1 loss. Our work will not only help us
comprehensively understand multiple genetic variations and epigenetic
patterns of the causative gene (RB1) of RB, but also provide a framework
to analyze genomic landscapes of cancers based on LRS data.

1. Materials and methods

1.1. Patient recruitment

The tumor tissues and matched blood were collected from the eyes of
16 patients with RB in Sun Yat-sen University Eye Hospital in Guangz-
hou city of China. The study was conducted according to the guidelines
of the Declaration of Helsinki. All the enrolled patients had signed the
consent forms and the proposed studies were approved by Ethics Com-
mittee (2016KYPJ028). The median age at diagnosis was 21.3 months
(ranging from 2.5 to 84 months). The detail information is provided in
Table S1.

1.2. Genome sequencing

The genomic DNA was extracted from RB tissues and corresponding
blood samples using Qiagen DNAeasy kits. Nanopore whole-genome
sequencing was performed for all samples. Eleven pairs of tumor and
blood samples were performed by paired-end whole-genome sequencing
on Illumina NovaSeq platform, and the other five pairs those overlapped
with the samples in published study were performed by paired-end
whole-exome sequencing [23]. In order to obtain high quality data,
fastp (v0.20.1) [24] was performed on NGS data with default parame-
ters, and the quality control process for ONT data was according to the
previous study [25]. On average, we obtained 76 Gb per tumor sample
with a median length of 6.9 kb and 50 Gb per blood sample with a
median length of 9.5 kb of ONT long-reads after quality control.
Meanwhile, an average of 134 Gb per tumor coupled with 87 Gb per
blood of NGS short-reads (paired-end 150 bp) were generated for each
sample (Table S2). To orthogonally validate the SVs detected by ONT,
we additionally used PacBio HiFi to sequence the tumor and blood
samples of one patient with RB.

1.3. Small variant calling

For NGS data, the clean reads were aligned to GRCh38 reference
genome using BWA (v0.7.17-r1188) [26]. Duplicates were removed
using Picard MarkDuplicates (v2.23.9) (https://broadinstitute.github.io
/picard/) with default settings. Germline SNVs and InDels were identi-
fied using HaplotypeCaller (GATK v4.1.9) [27] and FreeBayes (v1.2.0)
with default parameters. Only germline variants called by both tools
were retained. The types of loss-of-function (pLoF) variants include

nonsense, frameshift and splice site variants. Somatic SNVs and InDels
were detected using MuTect2 (GATK v4.1.9) [28], Strelka2 (v 2.9.10)
[29] and Neusomatic (v0.2.1) [30] on tumor-normal pairs, separately.
Somatic mutations called by more than two of the three methods were
kept. Based on MuTect2, Strelka2, Neusomatic variant caller, we used
multiple filtering standards to filter SNV/InDels. These criteria included
read depth, alternate allele observation count, mapping quality, base
quality, strand bias, etc. Detailed filtering standards and thresholds are
listed in the table (Table S3). Finally, Annovar [31] was used to annotate
these mutations.

1.4. Structural variant calling

For ONT data, the clean reads were aligned to GRCh38 reference
genome using minimap2 (v2.17-r941) [32] and ngmlr (v0.2.7) [33].
Sniffles (v1.0.12) [33] and cuteSV (v1.0.11) [34] were performed using
force call mode to get somatic SV datasets. Since Nanomonsv (v0.4.0)
[35] preferred corrected read, the ONT data was firstly corrected using
Fmlrc2 (v1.0.0) [36] before being processed by minimap2 and Nano-
monsv. Jasmine (v1.1.5) [37,38] was then used to merge the five call
sets and an SV called by at least three of the above five methods was
retained. Then, the in-house filtering was performed according to 1) SV
length ≥100 bp; 2) sequencing depth ≥6. And further manual checking
was performed using IGV (v2.12.2) [39] to ensure accuracy. Addition-
ally, to validate these somatic SVs, we applied a pairwise alignment
method to 10 translocations (TRAs), 10 large SVs (>30 M) and 10 SVs
detected only from LRS data. We extracted the flanking sequences on
both sides of the SV breakpoint and reconstructed the putative reference
sequence. The flanking sequence were 10 kb each, resulting in a putative
reference sequence of 20 kb. We used BLASTN for pairwise alignment of
the supporting LRS reads with the putative sequence. Snapshots of the
figures have been uploaded to Zenodo (https://zenodo.org/records
/11504094). Finally, AnnotSV [40] was used to annotate these SVs.
PacBio HiFi reads were aligned to GRCh38 using pbmm2 (v1.3.0) (http
s://github.com/PacificBiosciences/pbmm2) with default parameters,
followed by pbsv (https://github.com/PacificBiosciences/pbsv) joint
calling for tumor-normal pairs. False discovery rate (FDR) was defined
as the number of somatic SVs of ONT data that not overlapped with HiFi
data divided by the total somatic SVs number that we identified from
ONT data. The FDR value greater than 0.1 is considered high. To further
validate our pipeline, we applied it to the pair ONT sequencing data of
publicly available COLO928 tumor-normal cell line [41], whose somatic
SVs had been curated and validated. We focused on the standard somatic
SVs whose read length is longer than 100 bps. Precision is defined as the
number of overlapped somatic SVs divided by the total number we
identified. Sensitivity is defined as the number of overlapped somatic
SVs divided by the total number of standard somatic SVs. F1-score is
computed according to 2 × precision*sensitivity/(precision +

sensitivity).
For NGS data, Manta (v1.6.0) [42], Delly (v1.1.6) [43], Smoove

(v0.2.8) (https://github.com/brentp/smoove) and SvABA (v1.1.0) [44]
were used to call somatic SVs. The parameter of SvABA is -L 6, and other
SV callers’ parameters are default. Then Jasmine (v1.1.5) was used to
merge theses four call sets and an SV called by at least two methods was
retained. Manual checking was performed using IGV as mentioned in the
process of ONT data analysis.

1.5. DNA methylation analysis

For the Nanopore reads (fast5 files), Guppy (v4.0.15) was used for
basecalling with the parameters "-x ‘auto’ –config dna_r9.4.1_450bps_-
fast.cfg”. The basecalled reads were then aligned to the GRCh38 refer-
ence genome using minimap2 (v2.17-r941). To determine the
methylation status of the RB1 promoter, Nanopolish (v0.13.2) [45] was
employed with default parameters to identify 5mCs in the CpG context
of Chr13, then PEPPER-Margin-DeepVariant pipeline (v0.6) [46] was
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applied to the Binary Alignment Map (BAM) file with methylation tags
to obtain the phasing information. The BAM files were converted by
nanopore-methylation-utilities [47] in IGV to the bisulfite mode using
the Nanopolish results.

1.6. Mutation driver analysis

To identify cancer driver genes, dNdScv (v0.0.1.0) [48] and WITER
(v1.2) [49] were used to analyze somatic SNVs and InDels within exons.
The results of dNdScv showed that RB1 was the only gene with q-value
less than 0.1. The WITER analysis was performed on the Java platform
using recommended parameters, which showed that six genes passed the
Benjamini Hochberg FDR q-value cutoff of 0.1. To obtain a confident
result, we only retained the genes identified by both methods with an
FDR q-value less than 0.1.

1.7. Haplotype phasing analysis

The phasing information for the RB1 region on tumor or normal
genomes was obtained using the PEPPER-Margin-DeepVariant pipeline
(v0.6) [46]. Germline variants and long-read BAM files of each sample
were used to create phasing information. Finally, IGV was used for
visualization and manual checking.

1.8. Copy number analysis and ploidy estimation

In order to evaluate the reliability of copy number alterations (CNAs)
and ploidy of ONT data, we applied Mosdepth (v0.2.9) [50] with
parameter “-n -b region. bed” to calculate the genome coverage from
ONT and NGS data; the correlation coefficient (R ≈ 0.87, Pearson test, p
< 2.2e-16) between the two platforms indicated it was accurate enough
to obtain CNAs from ONT data. Somatic CNA analysis was performed by
NanoGLADIATOR [51] using ONT data. BAF was obtained through
HATCHet (v0.4.9) [52] using NGS data as input, of which the process
and parameter were referred to the author’s recommended. For ONT
data, SNPs were detected using NanoCaller (v3.0.1) [53], and then BAF
values were calculated using custom script. Per-chromosome ploidy,
namely whole-chromosome copy number, was estimated using read
depth in 1 Mb sequential bins, excluding the N-masked heterochromatic
regions.

1.9. Chromothripsis analysis

The presence of chromothripsis was determined based on the
breakpoints of somatic SVs and CNAs in the chromosome regions [54]. If
a chromosome arm showed more than 6 breakpoints, high breakpoint
densities (>2σ above the average breakpoint burden of each sample)
and CNAs, it was considered a chromothripsis event. In order to obtain
an accurate result, we also applied ShatterSeek (v1.1) [55] to detect
chromothripsis events using SVs and CNVs as input files, then selected
high confidence candidates with p value less than 0.05. The visualiza-
tion of chromothripsis was created using ShatterSeek and RCircos
(v1.2.2) [56].

1.10. Relative timing of somatic events analysis

Relative timing of somatic events was analyzed using a pipeline from
previous research [57]. The subclonal architectures were reconstructed
using PyClone-VI (v0.1.1) [58] with the parameters “fit -c 40 -d
beta-binomial -r 10″ based on the copy number profile, purity, and
ploidy data. Purity was estimated from HATCHet [52] or the VAF of
RB1. SNVs, InDels and SVs were assigned to mutation clusters using
mutationtimeR (v1.00.0) [57] with default parameters to determine the
timing of the driver event during tumor development. We referred to the
thresholds of the previous research and only retained events that
occurred at least three times to ensure the accuracy of the analysis. On

this basis, we drew the inferred trajectories of 16 samples, and used
Chi-square test to detect the statistical differences of different events.
For example, RB1 has a chi-square value of 10.23 and a significant
P-value of 0.006 compared to − 11q (Table S4). For the drawing of
preferential ordering diagrams, we used PhylogicNDT LeagueModel
(v1.0) [59] (parameters: -n_seasons 20 –n_perms 50) to integrate 16
samples.

1.11. Experimental validation of RB1 mutations

For further validation of the somatic SV, PCR assays were carried out
for a deletion (DEL) SV (DEL:13_48,380,287–13_48,381,346) on both
the tumor and blood samples of RB12, as well as on RB10 which did not
show any SV in the region. The breakpoint of the predicted SV was
covered by the PCR primers designed using Primer-BLAST [60]. The
primer sequence was listed in Table S5. The target region was then
amplified using 2x Phanta® Max Master Mix (vazyme, #P515) accord-
ing to the manufacturer’s instructions.

2. Results

2.1. Study design and analytic approach

To comprehensively understand the genetic basis of RB, we charac-
terized the full spectrum of genetic alterations, including SNVs, InDels
and SVs, across the whole or exome genome of RB. Firstly, using the ONT
platform, we obtained whole genome LRS data of 16 primary RB and 16
matched blood samples. Meanwhile, using the Illumina platform, we
obtained whole genome SRS data of 11 primary RB and 11 matched
blood samples. The whole exome SRS data of the other five pairs was
obtained from the previous study [23]. Then, the SRS data was used to
identify SNVs, InDels and SVs, while the LRS data was used to detect SVs
and methylation (Fig. 1a).

To obtain somatic small variants with high-confidence, we retained
the call set overlapped by at least two of three callers from the SRS data
(Methods). To obtain somatic SVs, we developed a pipeline to identify
high-confident somatic SVs. The FDR of SV calling for the RB08 ONT
datasets using our pipeline was 10% (Fig. 1b–c, Fig. S1-3, Methods). The
FDRs of the two tools specifically designed for somatic SV detection in
LRS data were 88.5 % and 99.5 % [35,61] (Table S6-7), which were
much higher than the value of our pipeline. To further validate our
pipeline, we applied it to publicly available COLO928 tumor-normal cell
line pair ONT data [62], whose somatic SVs had been curated and
validated. The SV number of the standard dataset was 58. We detected a
total of 53 SVs after performing our pipeline to the same ONT data, of
which 49 SVs are overlapped with the standard dataset (Fig. 1d). Thus,
our pipeline achieved a precision of 92.5 % (49/53), a sensitivity of 84.5
% (49/58) and an F1-score of 88.3 % (2 × pre-
cision*sensitivity/(precision + sensitivity)), demonstrating that it is
both sensitive and reliable in detecting somatic SVs in tumor tissue.
What’s more, to validate called somatic SVs in RB, we applied BLASTN, a
pairwise alignment method, to 10 translocations (TRAs), 10 large SVs
(>30 M) and 10 SVs that only detected from LRS data. Dotplots showed
that the LRS reads supported these SVs well with the reconstructed
sequence (Methods, Table S8).

To investigate whether LRS is better at detecting SVs than SRS, we
did a comparison of the SVs and CNAs identified from 11 pairs WGS data
by ONT and NGS platform, respectively (Fig. S4-7, Table S9). The results
show that ONT has the advantages in detecting the total SV number (140
vs. 122), as well as the certain SV type, such as INSs (18 vs. 1).

2.2. Landscape of genomic alterations in RB

Based on the LRS data of 16 RB samples, we detected 232 somatic
SVs, ranging from 3 to 52 per sample with an average number of 14.5
(Table 1, Fig. S8a, Table S9). These SVs included 51 DELs, 71
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duplications (DUPs), 31 insertions (INSs), 47 translocations (TRAs) and
32 inversions (INVs) (Fig. S8b). Chromosome13 (Chr13) was the pre-
dominant one where the SV breakends located, followed by Chr2 and
Chr1 (Fig. S8c). Notably, SVs tended to cluster in certain hotspot re-
gions, such as Chr2p and Chr13q, where two known RB-causing genes,
RB1 and MYCN, are located (Fig. S8d), suggesting the high levels of
genomic instability around susceptibility genes in RB. A total of 91 so-
matic SVs, ranging from 0 to 17 per sample, were found to directly
disrupt gene sequences, which were defined as pLoF somatic SVs
(Table 1).

Based on the SRS datasets, we detected 1788 non-redundant somatic
SNVs/InDels for the 16 samples, with an average of 112 variants per
tumor (Table S10-11). Among these, 95 variants (averaging 6 per sam-
ple) located in exonic and splicing regions, which could be predicted as
pLoF (Fig. S9). Missense mutation was the predominant type, account-
ing for 67 % of the total small variants.

With a comprehensive characterization of SNVs, InDels and SVs in
our RB cohort, the somatically acquired and whole genomic mutational
landscape of RB showed that RB1was themost commonly mutated gene,
followed by CNTNAP2 and KLF12, which had at least one pLoF variant
in more than two patients (Fig. 2). Furthermore, we found alterations
that affect multiple chromosomes, such as chromothripsis. The results
revealed the presence of chromothripsis in two samples (RB05 and

Fig. 1. Overview of this study in RB. a, Schematic diagram of study design. Sequencing data from Nanopore and Illumina platforms were used to detect somatic SV
and methylation, as well as phase the variants of RB1 gene. Then the detected variants were used to infer relative timing of somatic events. b, Ensemble workflow of
somatic SV detection using ONT and PacBio HiFi data. IGV means the manually checking and selecting the correct variants using Integrative Genomics Viewer. c, The
comparison of somatic SV number of orthogonally validated sample RB08 by ONT and PacBio HiFi data. d, The comparison of somatic SV number of validation
sample COLO928 identified from our pipeline and those reported in published literature.

Table 1
SV number in RB samples.

Sample SVnum pLoF SVnum

RB01 19 9
RB02 3 1
RB03 13 5
RB04 5 1
RB05 52 17
RB06 5 0
RB07 5 0
RB08 10 4
RB09 3 1
RB10 20 8
RB11 23 8
RB12 11 4
RB13 29 13
RB14 4 0
RB15 24 15
RB16 6 5
Average 14.5 5.7

Number of somatic SVs.
pLoF SVnum is the number of somatic SVs directly disrupting coding sequences
of genes.

J. Zheng et al.
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RB08), affecting RB1 and MYCN, respectively (Fig. S10, Table S12-13).
Taken together, our findings suggested that both small variants and
large SVs played significant roles in the somatic genetic variants of the
disease.

2.3. Pathogenic alterations of RB1 in RB

Genes whose mutation facilitates tumor growth are called cancer
driver genes [49,63,64]. By using two driver gene detection tools,
WITER [49] and dNdScv [48], we identified RB1 as the most potential
driver gene in RB tumorigenesis (Fig. S11a), which was consistent with
previous findings [2]. As a driver gene, both germline and somatic pLoF
variants in RB1 contributed to the tumorigenesis of RB. We identified a
total of 20 non-redundant genomic variants spreading over RB1 region
in 16 samples, where three small variants and five somatic SVs were not
reported in previous studies (Table 2, Table S14). In the blood of four
patients, we detected five small variants with an allele frequency of less
than 0.005 in Asian populations based on gnomAD (https://gnomad.
broadinstitute.org/). These variants were found to effect alternative
splicing or amino acid sequence of RB1, according to the annotation
[65]. Consequently, we consider these rare germline variants to be
pathogenic (Table S14). Nearly half of the variants (48 %) were
distributed in the RB1 pocket domains that covered exons 12 to 18
(Fig. S11b).

Together, among the 16 patients with RB1 alterations, four patients

exhibited germline variants in their blood samples, while 12 patients
had somatic variants specifically detected in their tumor tissues. Addi-
tionally, four patients presented somatic SVs involving RB1 in their
tumor tissues. Some patients had multiple alterations in RB1, such as
two somatic SNVs in RB07, two germline SNVs in RB16, and two somatic
SVs in RB05 (Figs. 3 and 4, Table 2, Fig. S12). Furthermore, we observed
loss of heterozygosity (LOH) events affecting RB1 in more than 56 % of
the patients (Fig. S7, S13-14, Table S15).

To further verify somatic SVs affecting RB1, we did a PCR assay to
validate a 1059-bp somatic DEL disrupting RB1 in RB12 (Fig. S12b). The
fragment length of the PCR production should theoretically be 1469 bp
in normal. Our results showed the presence of two fragments with
lengths of approximately 1500 bp and 380 bp in the RB12 tumor sample,
confirming this somatic SV. For the remaining samples who lacked
additional tissues or DNA for PCR validation and Sanger sequencing, we
used BLASTN for pairwise alignment of the supporting LRS reads for
their SVs with the reconstructed sequence (Methods). Dotplot shows
that these large SVs in RB1 are reliable (Fig. S15, Table S8).

In addition to genomic variants, aberrant DNA methylation
(DNAme), such as focal hypermethylation at promoters of tumor sup-
pressor genes (TSGs), may also lead to TSG inactivation and drive cancer
initiation [66]. For instance, despite no pLoF variant being found in
RB06 and RB09 at the genomic level, we found biallelic hyper-
methylation in the RB1 promoter of the two tumor samples (Fig. 5, S16,
Table S16), which could potentially silence the expression of RB1. This

Fig. 2. The landscape of genomic alterations in RB. a, Number of somatic variants (SNV/InDel/pLoF SV) per Mb over the coding regions from LRS or SRS data. b,
Mean ploidy of Chr13 from LRS data, ranging from 0 (red) to 3 (green; triploid). Diploidy is shown in white. c, Overview of somatic mutated genes per sample,
background of each cell depicts SVs and the inner square depicts small (coding) variants. d, From top to bottom: presence of germline variants in RB1; presence of
biallelic hypermethylation in RB1 promoter; presence of chromothripsis; age of the patients at diagnosis. The samples with any nonsynonymous germline variant in
RB1 are shown in aubergine. The tumors with and without biallelic hypermethylation in RB1 promoter are shown in red and white, respectively. The samples without
methylation data are shown in gray. The tumors with chromothripsis are shown in pink.
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highlights the advantage of simultaneous detection of SV and methyl-
ation by ONT data in exploring the pathogenesis of RB in case of no
detectable mutation before.

2.4. Two-hit of RB1 in RB

By taking advantage of long-read data, we detected the phasing in-
formation of variants in RB1 (Methods), which is missed by the short-
read-based method in phasing of cancerous variants and linking
together adjacent variants [46]. Our analysis showed various forms of
RB1 inactivation in tumor tissues. For instance, in RB01, we detected
one germline splicing SNV (NM_000321, exon6:c.607+1G > A) and one
somatic stopgain SNV (exon18:c.C1735T:p.R579X) in different exons of
RB1, belonging to two distinct haplotypes (Fig. 3a). In RB07, we
detected no germline variant but two somatic mutations (exon15:c.
C1399T:p.R467X and exon20:c.C1981T:p.R661W), located on different

haplotypes (Fig. 3b). Our study also revealed the significant impact of
pLoF SVs on RB1 inactivation, which has been comparatively under-
reported until now. In RB12, we detected a 20-bp somatic InDel flanking
the splicing donor site, which was further validated to result in the
skipping of exon 15 by transcript analysis of RB1, and one 1059-bp so-
matic DEL located in different haplotypes (Fig. 4a–S12a-b). In RB05, we
found that a 17 Mb somatic DEL, covering the intron 2 to transcription
termination site (TTS) of RB1, and a TRA was simultaneously detected
inside this region, which was validated by the supporting LRS reads
(Fig. 4b). These two SVs presented in the same clonal status when
calculated by PyClone-VI [58], indicating the biallelic inactivation of
RB1 by complex somatic SVs in RB05. In RB16, we found two hetero-
zygous germline variants (exon19:c.C1861A:p.R621S and exon20:
c.2093delG:p.R698fs) in the same haplotype. Interestingly, we observed
that the tumor tissue had a germline variant (exon19:c.C1861A) with
allele frequency (AF) of 1.0 due to losing normal allele by LOH, resulting

Table 2
Predicted pathogenic variants in RB1.

RB1 SNV/InDel RB1 pLoF SV RB1 promoter
hypermethylation

RB1
LOH

RB1 biallelic
inactivation

Germline Somatic Germline Somatic Germline Somatic

RB01 c.607+1G > A c.C1735T:p.R579X – – NA NA × yes
RB02 – c.T1472C:p.L491P – DEL:Start-End NA NA ✓ yes
RB03 – c.T2272C:p.S758P – – NA NA × unknown
RB04 – c.C1399T:p.R467X – – NA NA ✓ yes
RB05 – – – DEL:intron2-End TRA:

intron17–14:47,925,869
NA NA × yes

RB06 – – – – × ✓ × yes
RB07 – c.C1399T:p.R467X, c.C1981T:p.

R661W
– – × × × yes

RB08 – c.1448_1449del:p.H483fs – – × × ✓ yes
RB09 – – – – × ✓ × yes
RB10 – c.C1909T:p.Q637X – – × × ✓ yes
RB11 – c.C1654T:p.R552X – – × × ✓ yes
RB12 – splice_region:

TTTTTACTTTTAGTAAAAAA > −

– DEL:intron16-exon17 × × × yes

RB13 – c.2325+1G > A – DEL:Start-End × × ✓ yes
RB14 c.2489+1G > T – – – × × ✓ yes
RB15 c.C958T:p.R320X c.C1027A:p.L343I – – × × ✓ yes
RB16 c.C1861A:p.R621S,

c.2093delG:p.R698fs
– – – × × ✓ yes

Variants in RB1, including SNVs/InDels, SVs and promoter hypermethylation in germline or somatic forms.
Annotation of RB1 is according to NM_000321.3; “Start” and “End” denote the start and end loci.
“-” denotes that the variants of this type are not detected in this sample.
“NA” denotes that no data is available for methylation analysis.

Fig. 3. RB1 biallelic inactivation by small variants. a, One somatic stopgain SNV (exon18:c.C1735T:p.R579X) and one germline splicing SNV (exon6:c.607+1G > A)
are located on separated haplotypes, forming a ‘two-hit’ model in RB01 sample. b, Two somatic SNV (exon15:c.C1399T:p.R467X and exon20:c.C1981T:p.R661W)
locate on separated haplotypes, forming a compound heterozygous model in RB07 sample.
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in complete inactivation of RB1 in tumor tissue (Fig. S12c). To sum, no
sample had two germline variants on different haplotypes, possibly due
to the homozygous embryo lethal effect of complete germline inactiva-
tion of RB1 that had been observed in mice [67,68]. Totally, our findings
showed that except for RB03 who lacked the methylation data for
phasing, all patients had biallelic inactivation of RB1 in tumor tissues
that fitted the two-hit model with multiple forms, such as a germline
variant plus a somatic mutation, entire somatic mutations, and germline
variants plus LOH, but not germline homozygous mutation.

2.5. Inferring relative timing of somatic events in RB

Somatic evolution plays a key role in the development of various
types of cancers, which has been the subject of extensive investigation
[69,70]. For RB, the genomic mutation process during tumor develop-
ment is an as-yet unidentified event, presumably due to the limited
variants in RB [71,72]. On this line of reasoning, we tried to combine the
information of SNVs, InDels, SVs, as well as CNAs to access the relative
timing of genetic progression in RB [57].

We retained only events that occurred in at least three samples across
the cohort. The results showed that nearly all the estimated genetic
progression originated from RB1 variants. Examples of these genomic
alterations are described here along with underlying structural rear-
rangements (Fig. 6, Fig. S17, Table S17-18). In RB16, we observed that
copy neutral LOH (CN-LOH) of Chr13 in early clonal stage, which

resulted in the inactivation of RB1, followed by amplifications of Chr1q
and Chr7q. Later events included diverse alterations, such as copy loss
LOH (CL-LOH) of Chr16 (Fig. 6a). In RB01, the initial variants included
mutations in RB1 and amplifications of Chr1q, Chr6p, and Chr13q,
followed by deletions of Chr8p, Chr11q, Chr12p13, and Chr16. (Fig. 6b).
In RB13, RB1 variants tended to occur early, followed by amplification
of Chr13q and CL-LOH of Chr5q (Fig. 6c). In RB05, who had co-
occurrence of RB1 somatic SV and MYCN amplification, variants of
RB1, amplifications of Chr1q, Chr2p24, and deletions of Chr13q14.2,
occurred before the deletions of Chr8p, Chr11p, Chr12p13 and Chr16q
(Fig. 6d).

Overall, across all samples in our study, we found RB1 was the only
driver gene that had mutations during RB genetic progression. Based on
the PhylogicNDT LeagueModel simulation results, these rankings across
samples counted the probability order of occurrence of lesions, sum-
marizing whether each mutation occurred earlier or later in the devel-
opment of the tumor. We inferred that RB1 mutated among the earliest
events, then the other chromosomes presented instability (Fig. 6e–f).
Our analysis is similar to the tumor progression model proposed by
previous study [73]. The relative timing of somatic events of individual
tumor specimens was highly variable, which was also observed in
different types of cancers [57]. From the mutation time and prevalence,
we found that common drivers typically occur before rare drivers [57].
Therefore, our study inferred the relative timing of somatic events
during RB tumorigenesis, showing that the genetic progression of RB

Fig. 4. RB1 biallelic inactivation by small variants and SVs. a, One somatic InDel flanking the splicing donor site and one 1059-bp somatic DEL located in different
haplotypes in RB12. b, Two somatic SVs (DEL and TRA) form complex heterozygous somatic SVs in RB05.
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follows trends although it is far from deterministic.

3. Discussion

In this study, we use LRS and SRS to interrogate comprehensive
pathogenic variants of 16 RB tumors, which is the largest cohort that
employed LRS to investigate somatic SVs in RB to date. The addition of
LRS enables us to detect more SVs across the genome due to their longer
reads allowing for covering low-complex regions where SVs tend to
occur [13,15]. For instance, when we compared the confident results
from 11 samples’ whole genome LRS and SRS data, note that these SVs
were manually checked using IGV and could be considered reliable, we
found that more SVs were identified from LRS than SRS (140 vs. 122).
Notably, all but one of the 18 INSs were uniquely detected by LRS,

indicating that LRS exhibits increased sensitivity in detecting SVs in RB,
particularly the mutational type of INSs (Fig. S5).

As for the variants in RB1, whose inactivation is generally thought to
be the cause of RB initiation, although we thoroughly analyzed genomic
data, there are still no detectable causal variants in two samples (RB06
and RB09). To address this issue, we performed methylation analysis of
the 11 samples based on ONT data, the results showed that there are
somatic DNA hypermethylation of RB1’s promoters in the tumor tissues
of RB06 and RB09, lending weight to the notion that combinatory use of
LRS and SRS could better explain the genomic and epigenomic features
of cancer genomes to pinpoint the causal variants of RB.

Despite the comprehensive characterization of pathogenic variants
in RB, we are aware that the resolution of causal variants at a haplotype
level are required to clarify biallelic loss of RB1. We performed

Fig. 5. RB1 biallelic inactivation by methylation. Tumor sample is showed in the top track and blood (normal) in the bottom track. Red indicates hypermethylation
and blue indicates hypomethylation. HP1 and HP2 are the different haplotypes inferred from PEPPER-Margin-DeepVariant pipeline. The range in the red box is the
biallelic hypermethylation in RB1 promoter region. a, Somatic hypermethylation of RB1 promoter region in RB09. b, Somatic hypermethylation of RB1 promoter
region in RB06.
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haplotype phasing analysis of variants in RB1 using ONT long reads.
Since the samples (RB01-RB05) lack raw fast5 data for methylation
detection, we assigned the genomic variants of 16 samples and epi-
genomic variants of 11 samples into two haplotypes (Methods). We
found that except for RB03 who lacked the methylation data for phasing,
all sample presented biallelic inactivation of RB1 in various forms. It is
worth noting that, in some cases, fully inactivation of RB1 could only be
explained by LRS data, such as the complex heterozygous mutations by a
small InDel and a large SV in RB12, and the biallelic hypermethylated
promoter of RB1 in RB06 and RB09. One important caveat of our
analysis is the comprehensive identification and phasing of SNVs,
InDels, SVs and methylation by combinatorial analysis of LRS and SRS
lay the foundation for interpretation of biallelic loss of RB1.

There are some limits in this study. Firstly, with the respect to genetic
progression in RB, although we inferred the relative timing and preva-
lence using all genetic variants of 16 samples, more samples with
different stages of disease are required to investigate the details of
evolutionary trajectories [57,59]. Secondly, considering that LRS could
cover the regions not easily accessible to SRS or arrays technologies
[74], we analyzed CNAs and ploidy features using LRS, but the ability to
identify LOH is inadequate because of error-prone detection of small
variants by ONT. Once the accuracy of ONT data and the detection
method improved, we will obtain a more thorough overview of genomic
feature based on ONT data alone. Thirdly, we were unable to perform
comprehensive validation experiments for the somatic SVs due to the
limited size of the RB tumor tissue samples. The DNA extracted from
these samples was only sufficient for constructing sequencing libraries
for NGS and ONT platforms. While we were able to orthogonally vali-
date the SVs in samples RB08 and RB12 using PacBio HiFi sequencing
and PCR, respectively, the lack of additional tissues or DNA prevented
further validation in other samples. Future studies with larger tumor
samples that provide sufficient DNA for both sequencing and validation
experiments will help independently confirm the accuracy of SVs iden-
tified by LRS in RB genomes, particularly those uniquely detected by
ONT and those impacting key RB driver genes like RB1.

Overall, our study characterizes novel somatic SVs and delivers a
thorough overview of the genetic landscape of the RB genome, which
expands our understanding of pathogenic variants in RB. By leveraging
the capabilities of LRS data, we are able to uncover the phasing infor-
mation that effectively explains the biallelic inactivation of RB1 as well
as the relative timing of genetic progression in RB. This information
advances our understanding of the occurrence and progression of RB,
filling in gaps left by previous studies.
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