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ABSTRACT: To assess the importance of model parameters
in kinetic models, sensitivity analysis is generally employed
to provide key measures. However, it is quite often that no
information is available for a significant number of para-
meters in biochemical models. Therefore, the results of
sensitivity analysis that heavily rely on the accuracy of
parameters are largely ambiguous. In this study, we propose
a computational approach to determine the relative impor-
tance of parameters controlling the performance of the
circadian clock in Drosophila. While previous attempts to
sensitivity analysis largely depend on the knowledge of
model parameters which are generally unknown, our study
depicts a consistent picture of sensitivity assessment for a
large number of parameters, even when the values of these
parameters are not available in vivo. The resulting para-
metric sensitivity analysis suggests that PER/TIM negative
loop is critical to maintain the stable periodicity of the
circadian clock, which is consistent to the previously experi-
mental and computational findings. Furthermore, our ana-
lysis generates a rich hypothesis of important parameters in
the circadian clock that can be further tested experimentally.
This approach can also be extended to assess the sensitivity
of parameters in any biochemical system where a large
number of parameters have unknown values.
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Introduction

Living organisms are exposed tomultitude of environmental
influences and many of them follow a daily periodic change.
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Consequently, many physiological processes in living
organisms follow a daily periodicity, known as circadian
rhythms, controlled by the mechanisms broadly encapsu-
lated within the terms ‘‘circadian clocks’’ (Nitabach, 2005;
van Gelder et al., 2003). In recent decades, many components
and molecular mechanisms comprising circadian clocks have
been discovered by studying the model organisms such as
unicellular eukaryotes, fungi, plants, invertebrates, and
mammals (Young and Kay, 2001). Along with the discovery
of the components related to the circadian clock inDrosophila,
a number of mathematical models have been proposed to
describe interactions and controlling mechanisms among the
molecular components (Goldbeter, 2002).

To assess relative importance of biochemical parameters
with respect to the output of a system, two types of parametric
sensitivity analysis are generally employed (Rand, 2008; Varma
et al., 1999): local sensitivity analysis (LSA), and a more recent
approach, global sensitivity analysis (GSA). In LSA, we allow
one parameter to be varied one at a time and compute
derivative vector (Si ¼ @Y=@Pi, where Y is the output of
interest and Pi is the ith parameter) to obtain the sets of
values for the parameters which would indicate the sensitive
regions of each parameter. In contrast to LSA, GSA explores
effects of simultaneous parameter variations of arbitrary
magnitudes for a system (Rand, 2008). Since rate constants
of diverse biochemical processes in vivo are more likely to
vary simultaneously under varying environments, GSA is
believed to be more appropriate for sensitivity analysis of
biochemical systems (Rand, 2008; Stelling et al., 2004).

Because both LSA and GSA rely on the knowledge of
biochemical parameters, a robust and reliable analysis of a
biochemical system requires reliable quantitative informa-
tion on these parameters. However, the lack of in vivo or in
vitro measurements of the kinetic parameters makes
parameter estimation one of major obstacles in studying
� 2009 Wiley Periodicals, Inc.



Table I. ODEs for the model.

dx1
dt

¼ a2ð1� x1Þx18 � a8x1
(1)

dx2
dt

¼ a3ð1� x2Þx18 � a9x2
(2)

dx3
dt

¼ a1ð1� x3Þx18 � a7x3
(3)

dx4
dt

¼ a4ð1� x4Þx18 � a10x4
(4)

dx5
dt

¼ a5ð1� x6 � x5Þx16 � a11x5
(5)

dx6
dt

¼ a6ð1� x6 � x5Þx15 � a12x6
(6)

dx7
dt

¼ a48ða23x5 þ a24x6 þ a25ð1� x6 � x5ÞÞ � a32x7
(7)

dx8
dt

¼ a50ða20ð1� ð1� x1Þa45Þ þ a26ð1� x1Þa45Þ � a34x8
(8)

dx9
dt

¼ a51ða21ð1� ð1� x2Þa45Þ þ a26ð1� x2Þa45Þ � a35x9
(9)

dx10
dt

¼ a52ða22ð1� ð1� x4Þa46Þ þ a26ð1� x4Þa46Þ � a36x10
(10)

dx11
dt

¼ a49ða19ð1� ð1� x5Þa47Þ þ a26ð1� x5Þa47Þ � a33x11
(11)

dx12
dt

¼ a29x8 � a14x12x13 þ a17x17 � a39x12
(12)

dx13
dt

¼ a30x9 � a14x12x13 þ a17x17 � a40x13
(13)

dx14
dt

¼ a27x7 � a13x14x20 þ a16x18 � a37x14
(14)

dx15
dt

¼ a31x10 � a41x15
(15)

dx16
dt

¼ a28x11 � a38x16
(16)

dx17
dt

¼ a14x12x13 � a17x17 � a15x17x18 þ a18x19 � a42x17
(17)

dx18
dt

¼ a13x14x20 � a16x18 � a15x17x18 þ a18x19 � a43x18
(18)

dx19
dt

¼ a15x17x18 � a18x19 � a44x19
(19)
biological networks and therefore weakens effectiveness of
sensitive analyses (Mendes and Kell, 1998). In most of
previous attempts to mathematically describe the circadian
clocks, parameters were manually tuned to fit experimental
data quantitatively aided by biological knowledge of system
behaviors and phase plane analyses (Kulasiri and Xie, 2008;
Kulasiri et al., 2008; Leloup and Goldbeter, 2003, 2000;
Smolen et al., 2004; Tyson et al., 1999; Ueda et al., 2002;
Vilar et al., 2002; Xie and Kulasiri, 2007). However, manual
tuning is not only laborious but also gives no guarantee to
‘‘optimal’’ parameter values (Mendes and Kell, 1998), which
makes any subsequent sensitivity analysis largely ambiguous.
To surmount the limitation of this traditional approach,
several global parameter estimation (GPE) approaches have
been proposed to study biochemical systems in recent years. A
recent comparative study of several GPE approaches suggested
that although GPE approaches also cannot guarantee global
optimality with certainty, their robustness makes them the
best available candidate for estimating the parameters in a
biochemical system (Moles et al., 2003).

In this research, we assess the relative importance of the
parameters controlling the periodicities of the circadian
clock naturally inherent in Drosophila. To reveal the impor-
tant parameters in the system without a prior knowledge of
parameter values, we propose a hybrid approach, named
GPEGSA, which can be regarded as an ‘‘unbiased’’ approach
that is independent of any particular choice of parameters.
Our results show a number of parameters which are
important to control periodicity of the circadian clock and
suggested PER/TIM negative feedback loop is critical for
maintaining stable circadian rhythms in Drosophila.
Materials and Methods

Construction of Circadian Clock Model

The structure of the genetic regulatory network of the
circadian clock considered in the present study has been
reported previously (Xie and Kulasiri, 2007). The ordinary
differential equations describing the model are listed in
Table I. The rate constant parameters and components of
the model are given in Figure 1 and Table II. The model is
briefly described in the Supplementary Material.
GPEGSA Approach

To analyze the parametric sensitivity of the systems without
knowing the parameter values, the proposed hybrid
approach (GPEGSA) is outlined in Table III. This approach
is a sequential combination of GPE, GSA and relevant
statistical analyses. First, GPE was used to search possible
parameter solutions of the circadian clock model in the
parameter space confined by biological and biochemical
knowledge. Secondly, GSA was used to analyze the
sensitivity of parameters for all the parameter sets resulted
from GPE. Finally, statistical analyses were performed for
the results from GSA to find the most important parameters
in the circadian clock.
Global Parameter Estimation

Parameter Constraints

We constrained some of the parameters to the appropriate
values and the ranges based on biological knowledge to-date
and insights to simplify the estimation. First, we assumed the
following to reduce the number of parameters to be
estimated from 44 to 38: (1) The binding and unbinding
rates of CLK/CYC dimer to per gene were the same as those
of tim gene. The reasoning behind this assumption is that
the genome analysis revealed that the upstream of both per
and tim transcription initiation sites contains a consensus E-
box DNA motif (CACGTG), which is a known target for
CLK and CYC, a family of basic helix-loop-helix domain
(bHLH) transcription factors (TFs) (Hao et al., 1997). As the
peaks and troughs of per and timmRNA concentrations are
similar according to the experiments, we hypothesized that
the TF dimers, CLK/CYC, had similar kinetic affinities on
the per and tim promoters producing similar binding and
Xie et al.: Unbiased Sensitivity Analysis 251
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Figure 1. Schematic diagram of the structure of the model. The molecular components in the system and their corresponding mathematical symbols used for the equations in

Table I are denoted.
unbinding rates to the respective promoters, thus making
transcription rates similar as well. (2) A number of experi-
ments showed that the concentrations of PER and TIM had
highly similar profiles and these results suggested that the
oscillating PER and TIM levels resulted from the oscillating
levels of per and timmRNAs (Sehgal et al., 1995).We therefore
assumed that the translation rates of per and timmRNAs were
the same. (3) The kinetics of degradation of PER and TIM
were assumed to be the same since experimental evidence
showed that the degradation of both PER and TIM are all
regulated by the product of the slimb gene in the condition
of constant darkness (Grima et al., 2002). In addition,
several other kinases are involved in the regulatory processes
of PER and/or TIM such as DBT, GSK-3, or CKII.

Secondly, the initial ranges of parameters are sought to
confine within physiologically meaningful ranges. In a
previous study, a similar random sampling search algorithm
was used where all the parameters were arbitrarily set to be
bounded between 0 and 10, with units in nM and hours
(Locke et al., 2005). In this study, instead of giving a
constant initial range for all the parameters, we searched
more meaningful parameter ranges in the literature based on
functional similarities of genes, mRNAs and proteins. Any
values of parameters found in literature are called reference
values. There are some previous studies suggesting that
transcription rates, degradation rates of mRNA and protein in
gene expression vary several orders in magnitude (Hargrove
et al., 1991). Therefore, in the absence of any other specific
information, we set the lower and higher boundaries of our
target parameters to one-tenth of the lowest reference value
and 10 times the highest reference value, respectively. The
252 Biotechnology and Bioengineering, Vol. 105, No. 2, February 1, 2010
ranges of parameters used for the parameter estimation is
summarized in Table IV and the reasoning behind the
parameter ranges is provided in the Supplementary Material.
Random Number Generator

Even though we reduced 44 parameters to 38 parameters,
testing all possible combinations of 38 unknown parameters
for potential parameter values within their ranges was still
computationally infeasible. Assuming that only 10 candidate
values for each parameter, the total combinations would be
as high as 1038. To overcome this difficulty, we generated a
number of parameter sets, where one parameter set consisted
of 38 parameters, using random sampling from the parameter
ranges in Table IV. To minimize the gaps between the
preceding random numbers, one million parameter sets were
produced. Random numbers were generated using the Sobol
algorithm, which is known to be useful in computational
problems where numbers are computed on a grid without a
prior knowledge of how the grid should be (Press, 1997).
Selection of Acceptable Parameter Sets

We first defined 23–25 h as the period range of rhythms for
wild-type (WT) Drosophila (Hardin, 2005). We also defined
19–29 h as the period range of rhythms for mutant
Drosophila (Dunlap, 1999), although in a few cases ultra-
long (up to 33 h) or ultra-short (down to 16 h) mutants have
also been observed (Konopka et al., 1994; Rothenfluh et al.,
2000). The goal of parameter estimation is to find out
parameter sets which can produce WT circadian rhythms.



Table II. Biochemical meaning of parameters.

Parameters Biochemical meaning

a1 Binding rate of CLK/CYC to an E-box in pdp1 promoter

a2 Binding rate of CLK/CYC to an E-box in per promoter

a3 Binding rate of CLK/CYC to an E-box in tim promoter

a4 Binding rate of CLK/CYC to an E-box in vri promoter

a5 Binding rate of PDP1 to the V/P box in clk promoter

a6 Binding rate of VRI to the V/P box in clk promoter

a7 Unbinding rate of CLK/CYC to an E-box in pdp1 promoter

a8 Unbinding rate of CLK/CYC to an E-box in per promoter

a9 Unbinding rate of CLK/CYC to an E-box in tim promoter

a10 Unbinding rate of CLK/CYC to an E-box in vri promoter

a11 Unbinding rate of PDP1 to the V/P box in clk promoter

a12 Unbinding rate of VRI to the V/P box in clk promoter

a13 Association rate of CLK/CYC dimer

a14 Association rate of PER/TIM dimer

a15 Association rate of CLK/CYC/PER/TIM complex

a16 Dissociation rate of CLK/CYC dimer

a17 Dissociation rate of PER/TIM dimer

a18 Dissociation rate of CLK/CYC/PER/TIM complex

a19 Transcription rate of activated pdp1 gene

a20 Transcription rate of activated per gene

a21 Transcription rate of activated tim gene

a22 Transcription rate of activated vri gene

a23 Transcription rate of activated clk gene

a24 Transcription rate of repressed clk gene

a25 Transcription rate of clk gene (binding neither PDP1 nor VRI)

a26 Transcription rate of deactivated per, tim, vri or pdp1 gene

a27 Translation rate of clk mRNA

a28 Translation rate of pdp1 mRNA

a29 Translation rate of per mRNA

a30 Translation rate of tim mRNA

a31 Translation rate of vri mRNA

a32 Degradation rate of clk mRNA

a33 Degradation rate of pdp1 mRNA

a34 Degradation rate of per mRNA

a35 Degradation rate of tim mRNA

a36 Degradation rate of vri mRNA

a37 Degradation rate of CLK protein

a38 Degradation rate of PDP1 protein

a39 Degradation rate of PER protein

a40 Degradation rate of TIM protein

a41 Degradation rate of VRI protein

a42 Degradation rate of PER/TIM dimer

a43 Degradation rate of CLK/CYC dimer

a44 Degradation rate of CLK/CYC/PER/TIM complex

a45� Number of E-boxes in per or tim promoter

a46� Number of E-boxes in vri promoter

a47� Number of E-boxes in pdp1 promoter

a48� Concentration of clk promoter

a49� Concentration of pdp1 promoter

a50� Concentration of per promoter

a51� Concentration of tim promoter

a52� Concentration of vri promoter

Constants are marked with ‘‘�.’’ The values of the constants: a45: 5; a46: 4;
a47: 5; a48–a53: 0.003185 nM.

Table III. Procedure for the GPEGSA approach.

(1) Global parameter estimation

(1a) Set parameter constraints to reduce parameter space if possible

(1b) Define parameter ranges according to biological knowledge

(1c) Generate a large number of parameter sets within the ranges

using Sobol algorithm

(1d) Run the model using the parameter sets, if the parameter set

produces a desired output, save the parameter set for the Step 2

(2) Global sensitivity analysis

(2a) For a parameter set from Step 1d, select the parameter to be

examined and define the parameter variation ranges

(2b) Generate a number of parameter sets within the range using

Latin Hypercube Sampling

(2c) Fit each parameter set into the model, test if the output

produced is ‘‘behavior’’ given criteria

(2d) Compare distribution of ‘‘behavior’’ and ‘‘non-behavior’’

parameter sets; evaluate sensitivity of parameters

(2e) Go to Step 2a and repeat the Step 2 for all the parameter sets

in Step 1d

(3) Statistical analysis of sensitivities for all the parameter sets

Table IV. Initial parameter ranges used for parameter estimation.

Parameters Running range Note

a1–a6 0.0072–7.2 Protein–DNA binding

a7–a12 0.144–72 Protein–DNA unbinding

a13–a18 3.6–108 Protein–protein binding and unbinding

a19–a23 0.2–200 Transcription (activated)

a24, a26 0.0001–0.01 Transcription (repressed and deactivated)

a25 0.0001–1 Transcription (clk)

a27–a31 0.2–200 Translation

a32–a36 0.007–0.3 Degradation of mRNA

a37–a41 0.011–2.3 Degradation of protein

a42–a43 0.011–2.3 Degradation of dimmer

a44 0.055–11.5 Degradation of tetramer

Unit: nM and hour.
To obtain more possible acceptable parameter sets, we set
the initial parameter estimation criterion to mutant rhythm
instead. For those parameter sets producing mutant
rhythms but out of the range of WT, we could rescale the
oscillations to WT period by multiplying each differential
equation with the same appropriate scaling factor. The
period was measured after 500-h simulation time to
eliminate potential transition states. Amplitudes were not
taken into account for selection criteria because the
concentrations of the circadian clock related mRNAs and
proteins are not known and only relative concentration
abundance was measured in vivo.
Global Sensitivity Analysis

We used a well-established approach, regionalized sensi-
tivity analysis (RSA), for GSA. In RSA all the parameters
vary simultaneously within defined ranges. Then the
parameter sets were split into two groups according to
the selected objective function. The statistical difference of
the two groups was calculated to indicate the sensitivity of
the model performance to the parameter variation. We refer
to the original paper (Hornberger and Pear, 1981) for the
technical details of RSA. A summary of RSA procedure
employed in this study is given below.
Xie et al.: Unbiased Sensitivity Analysis 253
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(1) W
254
e selected the parameters to be tested for sensitivity
analysis and defined the ranges of the selected
parameters to be varied. Here we chose all the
parameters related to the rate constants of biochemical
processes (Table II). The parameters a45 (the number of
E-boxes in per or tim promoter), a46 (E-boxes in vri
promoter), and a47 (E-boxes in pdp1 promoter) are
related to the structure of the model and were not
considered to be subjected to variation. The parameters
were examined within a range of �30% of their
reference values. The variation of 30% was taken since
the later results indicated that 30% variations gave us a
reasonable number of parameter sets which can produce
sustained oscillations.
(2) W
e generated vectors of parameters from random
distributions within defined ranges. For each acceptable
parameter set, we generated 5,000 sets of parameters.
We used Latin Hypercube Sampling (LHS) to generate
sample random parameter vectors since LHS guarantees
that individual parameter ranges are evenly covered
(McKay et al., 1979).
(3) W
e ran the model using 5,000 sets of parameters from
LHS and determined whether a parameter vector was
‘‘behavior’’ by examining whether the set produced
sustained oscillations for all the components in the
system with period of WT rhythm �5 h. The circadian
rhythms beyond this range were defined as ‘‘non-
behavior.’’
(4) F
or each parameter, we compared the cumulative
distributions of the parameter values associated with the
‘‘behavior’’ and ‘‘non-behavior.’’ If the two distribu-
tions were not statistically different, the parameter was
classified as insensitive; otherwise, the parameter was
classified as sensitive. Kolmogorov–Smirnov (KS) test
was used to evaluate the statistical difference between
the two distributions and P value less than 0.05 was
defined as ‘‘significantly different’’ (Stephens, 1970).
Local Sensitivity Analysis

We also performed LSA in this study for comparison with
GSA. Similar to GSA, only period sensitivity was considered
for LSA, which was defined by Sðt; pjÞ ¼ dtðt; pjÞ=@pj,
where t(p) defines the period of the system for a given
parameter p. Furthermore, normalized period sensitivity
(Sn) is defined by

Snðt; pjÞ ¼
pj

tðpjÞ
Sðt; pjÞ (20)

Both period sensitivity and normalized period sensitivity
have been used in previous research for analyzing period
sensitivity of oscillations in chemical and biochemical
Biotechnology and Bioengineering, Vol. 105, No. 2, February 1, 2010
systems (Stelling et al., 2004; Varma et al., 1999), and we
used normalized period sensitivity in this study.
Computational Implementation

All the simulations were performed withMatlab. ODEs were
solved using ‘‘ode23s’’ solver. Sobol algorithm was
implemented using the program written by John Burkardt
(http://people.scs.fsu.edu/�burkardt/m_src/sobol/
sobol.html). LHS random sampling was implemented using
‘‘LHS’’ function in the statistics toolbox in Matlab. We used
‘‘kstest2’’ function in the statistics toolbox in Matlab to
implement KS test.
Results

Determination and Characterization of the
Parameter Sets

To search the possible parameter sets for the model, we first
generated one million parameter sets using quasi-random
algorithm, each set represented a vector of random
parameter values. By setting the initial acceptable periods
of 19–29 h, we were able to obtain 47 parameter sets, where
24 sets produced damped oscillations and 23 sets produced
sustained oscillations. Among the 23 sets, 5 are with WT
rhythms (23–25 h period) and the periods of the rest 18 sets
could be rescaled to WT. Finally, these 23 parameter sets
were used for further analysis (values listed in Supplemen-
tary Table I). Principal component analysis showed the
distribution of all the parameter sets in the first three
principle axes (Fig. 2), where these three principal axes
define 85.55% of the entire parameter space. As shown in
Figure 2, 23 parameter sets do not cluster in particular
positions in the space defined by the three principal axes,
instead they widely disperse throughout the parameter
space, illustrating that a large parameter space confined by
the parameter constrains has been searched.
Sensitive Parameters Revealed by GSA

Having known the possible parameter sets for the model,
we performed GSA for all the 23 sets to determine the effects
of changes in model parameters on the period performance
of the circadian system. The resulting KS tests comprised of
a 23� 44 matrix in which P values from 44 parameters in
each parameter set for all the sets were recorded
(Supplementary Table II). To illustrate how the P value
reflects the sensitivity of parameters, we arbitrarily chose the
parameter set 4 and plotted the cumulative distributions for
its most sensitive parameter, a36 (degradation rate of vri
mRNA and P¼ 1.34E� 7), and its most insensitive
parameter, a25 (basal transcription rate of clk gene and
P¼ 0.96) (Fig. 3). The cumulative distribution of a36
showed a distinct difference for the acceptable and
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Figure 2. Principal component analysis for 23 parameter sets in the parameter space. The first three principal axes are displayed.
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unacceptable outputs, indicating that the variations of this
parameter resulted distinguishing behaviors of the system,
whereas a25 had nearly similar cumulative distribution
curves for the acceptable and unacceptable outputs,
indicating that changes in a25 had little influence to the
system output.

The heatmap image in Figure 4 shows that in each
parameter set, the system was very sensitive to the
variations of some parameters whereas some parameters
had little or no influence to the system’s output. We
further defined parameters as ‘‘sensitive’’ if its P values of
Paramete
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the KS tests being lower than 0.05, or ‘‘insensitive’’
otherwise. As shown in the bar plot on the upper axis of
the image, each parameter set contains different number of
sensitive parameters, ranging from 12 to 27. However, if we
examine the sensitivity of each parameter in different
parameter sets, we can see that some parameters show a
surprisingly consistent picture as shown in the bar plot on
the right axis of the image. In particularly, the parameter a36
(degradation rate of vrimRNA) were classified as ‘‘sensitive’’
21 times out of 23 tests. Notably, a24, a25 (repressed and
basal transcription rate of clk gene) and a26 (transcription
r set
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rate of deactivated per, tim, vri, or pdp1 gene) were
consistently classified as ‘‘insensitive’’ although their
parameter values considerably changed within their defined
ranges.
Functional Analysis of Sensitive Parameters

We next evaluated the biological context of the identified
sensitive parameters. A parameter is defined as ‘‘sensitive’’ if
its median P value of 23 tests is significant (<0.05).
Seventeen identified sensitive parameters and their corre-
sponding biochemical meanings are listed in Table V.
Surprisingly, all the sensitive parameters are associated with
vri, clk, per, and tim molecules, including their genes,
mRNAs, and proteins whereas none of the parameters
regulating pdp1molecules are classified as ‘‘sensitive.’’ Given
the fact that the current circadian clock contains per/tim
negative feedback loops, vri negative feedback loop, and
pdp1 positive feedback, our sensitivity analysis suggested
that the negative feedback loops play central roles in
controlling the period of the circadian rhythms. It is also
notable that all the controlling parameters in the protein
DNA interactions in the per/tim feedback loop were all
identified as sensitive. We also classified the parameter
sensitivity according to different biochemical functions in
Table V, including protein–DNA interactions, transcription,
translation, degradation of mRNAs, degradation of proteins
and protein–protein interactions. The results show that
periodicity was consistently more sensitive to mRNAs
degradations than protein degradations where the degrada-
tion rates of four mRNAs out of five were identified as
‘‘sensitive’’ whereas the degradation rate of only one protein
Table V. Summary table of the sensitive parameters.

Parameters Median P of KS test Parameter descript

a36 9.77E� 05 Degradation rate of vri mRNA

a41 2.14E� 04 Degradation rate of VRI protein

a23 4.44E� 04 Transcription rate of activated clk ge

a27 2.64E� 03 Translation rate of clk mRNA

a20 6.81E� 03 Transcription rate of activated per ge

a21 6.81E� 03 Transcription rate of activated tim ge

a29 7.32E� 03 Translation rate of per mRNA

a30 7.32E� 03 Translation rate of tim mRNA

a32 8.04E� 03 Degradation rate of clk mRNA

a6 1.23E� 02 Binding rate of VRI to the V/P box i

a22 1.38E� 02 Transcription rate of activated vri ge

a34 1.59E� 02 Degradation rate of per mRNA

a35 1.59E� 02 Degradation rate of tim mRNA

a2 1.60E� 02 Binding rate of CLK/CYC to an E-bo

a3 1.60E� 02 Binding rate of CLK/CYC to an E-bo

a8 1.77E� 02 Unbinding rate of CLK/CYC to an E

a9 1.77E� 02 Unbinding rate of CLK/CYC to an E

a4 1.92E� 02 Binding rate of CLK/CYC to an E-bo

a10 3.59E� 02 Unbinding rate of CLK/CYC to an E

dmRNA, degradation of mRNA; dprotein, degradation of proteins; Tsc, tra
Molecular component: the upstream molecule of the parameter. Biochemi

parameter controls.
(VRI) appeared in the sensitive list. Furthermore, the
circadian system was sensitive to the perturbations of the
degradation rates of both vri mRNA and protein, and the
stability of vri mRNA seemed to be important than that of
VRI protein.
Comparison of LSA and GSA

Because the sensitivity analyses for circadian clock systems
in the previous investigation were carried out by LSA
(Leloup and Goldbeter, 2000; Smolen et al., 2001, 2004), we
also examined whether LSA gave similar indication as GSA
did (Supplementary Table III). The ranks of parameter
sensitivity given by LSA against those of GSA were shown in
Figure 5, where the ranks were calculated according to
median sensitivity values over the results from 23 parameter
sets. If the ranks of a parameter given by two investigated
approaches are similar, they should be aligned along the 458
(diagonal) line. Figure 5 illustrates two trends of the results
from both approaches. On the one hand, some parametric
sensitivity given by the two approaches is very similar; in
particular, both approaches gave the same result for
parameters a7, a10, and a42 (see Table II for their biochemical
meaning). On the other hand, the resulting rankings of some
parameters are significantly different. For example, para-
meter a36 was ranked to be the most sensitive by GSA
whereas it was ranked 16th by LSA.
Discussion

The dynamic behavior of the circadian clock is affected
by topology of the molecular components and their
ion Molecular component Biochemical process

vri dmRNA

vri dprotein

ne clk Tsc

clk Tl

ne per Tsc

ne tim Tsc

per Tl

tim Tl

clk dmRNA

n clk promoter vri PDI

ne clk Tsc

per dmRNA

tim dmRNA

x in per promoter per PDI

x in tim promoter tim PDI

-box in per promoter per PDI

-box in tim promoter tim PDI

x in vri promoter vri PDI

-box in vri promoter vri PDI

nscription; Tl, translation; PDI, protein–DNA interaction.
cal process: the functional category of the biochemical process where the
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Figure 5. Ranks for LSA and GSA. The x- and y-axes denote the ranks of

sensitivity calculated by GSA and LSA, respectively, ranging from 1 to 44. The lower

value from GSA and the higher value from LSA indicate more sensitive parameters

(Supplementary Material).
biochemical parameters. Sensitivity analysis can determine
the relationships between system behavior and parameter
variations. However, the knowledge about the strength of
parameters in the circadian clock is generally absent. Even
some measurements of biochemical parameters are available
from literature, they are often estimated within an order of
magnitude under different experimental conditions. In this
study, we have systematically investigated the influence of
biochemical parameters on the period behavior of clock
system based on our proposed computational approach,
without a prior knowledge of parameter values.

We have tested one million possible parameter sets from
the parametric ranges derived from the biochemical and
biological literature. Although intensive searching the
parameter space costs extensive computational time, around
1 week in a personal computer, it ensured that we obtained
to receive much more reliable parameter sets than the pre-
vious models where manual tuning were usually used. Out of
one million initial parameter sets, 47 produced oscillations
with periods of 19–29 h. Among them, 24 oscillations were
damped and 23 oscillations were sustained which were
subsequently used as inputs for GSA. Principal components
analysis revealed that 23 parameter sets are widely dispersed
throughout the parameter space, illustrating that the
interconnectivity of parameters, instead of particular values
of individual parameters, specify model outputs.

The results from the sensitivity analyses for all the 23
parameter sets identified 19 important parameters control-
ling the system’s periodic outputs. Functional analysis of
these parameters revealed that the negative feedback loops in
258 Biotechnology and Bioengineering, Vol. 105, No. 2, February 1, 2010
the circadian clock system played a more critical role than
positive feedback loop in terms of period. This is consistent
with the finding from a previous theoretical model that a
single negative feedback alone can maintain the periodicity
of a clock system (Smolen et al., 2001). In particular, all the
parameters in the protein DNA interactions involved in the
per/tim feedback loop are identified to be important. This
computationally proved that the transcriptional regulation
of the per/tim feedback loop is the main force to alter the
period of the system, as a similar conclusion drawn from a
previous mathematical model (Smolen et al., 2004). It is also
notable that the functional analysis for the sensitive
parameters suggested that the periodicity of the system
was more sensitive to mRNA degradation variations than
that of protein. Given the fact that the mRNA degradation
rates are on average lower than the protein degradation rates
in the model system, one may ask whether the higher
sensitivity of the system to mRNA variations is caused by the
lower value of mRNA degradation rates. Comparing mRNA
degradation rate to its protein degradation rate for each
molecular component in the 23 parameter sets, we observed
17 cases where the degradation rates of a mRNA was higher
than its protein. Among 14 of the 17 cases, the system was
found to be more sensitive to mRNA variation than that of
the protein. Therefore, it is likely that the structure of the
model, instead of the lower mRNA degradations rates,
decides that the mRNA degradation is more important than
protein degradation for controlling the periodicity of this
system.

Finally, the comparison study between GSA and the
conventional LSA suggested that for some parameters, these
two different approaches drew significantly different conclu-
sions. As GSA renders more realistic perturbations of
biological systems, GSA may give more reliable information
regarding the sensitivity of these parameters.

Overall, we have demonstrated the feasibility of GPEGSA
approach to measure the functional influence of biochem-
ical parameters on the periodic outputs of a circadian clock
system in this study. Hence, we are able to identify critical
parameters and to better understand the mechanisms of the
complex circadian clock system. The results verified the
consistency of the analysis with the current knowledge of
biology and provided indications for the most informative
parts in the circadian clock, which can be used as initial
guesses in experiment design for accurate parameter
estimation. As our current knowledge of components in
the circadian clock expands, the model structure used in this
study is likely to be modified in the near future. Our
proposed sensitivity analysis framework provides a high
degree of flexibility by additional components into the
model without knowing their quantitative relationship to
the other components.
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