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The landscape of human phosphorylation networks has not been systematically explored,
representing vast, unchartered territories within cellular signaling networks. Although a large
number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)-based
approaches, assigning the upstream kinases to these residues requires biochemical analysis of
kinase-substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on
functional protein microarrays and bioinformatics to experimentally identify substrates for
289 unique kinases, resulting in 3656 high-quality KSRs. We then generated consensus
phosphorylation motifs for each of the kinases and integrated this information, along with
information about in vivo phosphorylation sites determined by MS, to construct a high-resolution
map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in
652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA
downstream of Btk (Bruton’s tyrosine kinase) during B-cell receptor signaling. Overall, these
studies provide global insights into kinase-mediated signaling pathways and promise to advance
our understanding of cellular signaling processes in humans.
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Introduction

Protein phosphorylation, mediated by protein kinases, is one
of the most wide-spread regulatory mechanisms in eukaryotes.
Recently, several high-throughput studies designed to
analyze the global properties of phosphorylation networks
in various model organisms have been reported (Linding
et al, 2007; Fiedler et al, 2009; Breitkreutz et al, 2010;
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Van Wageningen et al, 2010). Though these studies, which
employed approaches based on protein-protein interactions
(PPIs), genetic interactions, gene expression profiling, and
motif-based predictions, have uncovered important clues
about the organization and regulation of kinase-mediated
signaling pathways, they are each limited in their ability to
identify direct enzymatic interactions between kinases
and their substrates. This requires biochemical analysis of
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kinase-substrate relationships (KSRs) using purified protein
components. However, global analysis of activity-based
phosphorylation networks—built upon direct KSRs—is lack-
ing in higher eukaryotes. Indeed, only ~2000 human KSRs
have been experimentally identified to date. In contrast,
>70400 in vivo phosphorylated serine, threonine, and
tyrosine residues have been characterized by mass spectro-
metry (MS/MS) (Olsen et al, 2006; Yang et al, 2006; Molina
etal,2007; Wang et al, 2007; Mathivanan et al, 2008). Together,
this implies that, for the vast majority of identified in vivo
phosphorylation sites, the specific kinase(s) responsible for
the phosphorylation event remains unknown.

Results

To help narrow this knowledge gap, we developed a new
strategy based on functional protein microarrays and bioinfor-
matics analysis to assign upstream kinases to specific
phosphorylation events found in vivo. This strategy, which
we have dubbed ‘CEASAR’ because it provides a general
framework for Connecting Enzymes And Substrates at Amino
acid Resolution, was used to construct a high-resolution map
of human phosphorylation networks that connects kinases to
specific phosphorylation sites on their downstream substrates.
In addition to in vivo phosphosites, such a map requires two
key elements: (1) an activity-based phosphorylation network
based on direct KSRs and (2) information about the consensus
phosphorylation motif of each kinase in the network. To this
end, we first employed human protein microarrays to
experimentally determine substrates for 289 unique human
kinases (Supplementary Table 1). We then developed a new
algorithm, based on both the experimentally derived KSRs and
in vivo phosphorylation sites identified by MS/MS, to
determine phosphorylation motifs for each kinase in the
collection. Finally, we combined these KSRs, in vivo phospho-
sites, and the newly determined motifs to connect kinases
to specific phosphosites, resulting in a high-resolution map
of human phosphorylation networks (Figure 1). Application of
this map led to the discovery of a new role for cAMP-
dependent protein kinase (PKA) downstream of Bruton’s
tyrosine kinase (Btk) during B-cell receptor (BCR) signaling.
We envision that the CEASAR strategy can be applied to
additional data sets to generate high-resolution maps of other
protein post-translational modifications important to cellular
physiology.

Identification of human KSRs using protein
microarrays

The protein microarrays used during this study are composed
of 4191 unique, full-length human proteins representing 12
major protein families (Hu et al, 2009). Among the protein
families that are represented on the microarrays, some, such as
transcription factors (TFs), kinases and RNA-binding proteins,
are known to be widely regulated by phosphorylation, while in
others, such as mitochondrial proteins, the role of protein
phosphorylation is less well understood (Supplementary
Figure 1). To identify those proteins on the array that could
be phosphorylated by a given kinase, individual protein
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microarrays were incubated with active, full-length human
kinases in the presence of [y->2P]ATP, as described previously
(Zhu et al, 2000; Ptacek et al, 2005; Supplementary Figures 2
and 3; see Materials and methods). For each batch of
phosphorylation reactions, one microarray was also incubated
in the absence of any kinase to identify those proteins that
underwent autophosphorylation and/or bound ATP tightly
(Supplementary Figure 4). These control experiments
led to the removal of 52 proteins from further analyses due
to autophosphorylation or direct binding to ATP. The
reproducibility of the phosphorylation assay was confirmed
by performing a subset of the phosphorylation reactions in
duplicate (Supplementary Figure 5). To identify the specific
substrates of a given kinase, the proteins on the array were
scored using an algorithm designed to measure the relative
signal intensity of each spot (Hu et al, 2009). Using a cutoff
value of three standard deviations above the mean intensity
(Supplementary Figure 6), we identified 24 046 phosphoryla-
tion events involving 289 unique kinases and 1967 unique
substrates. This collection of in vitro ‘hits’ was termed as the
‘TawKSR’ data set (Figure 1; Supplementary Table 2).

To enrich the KSRs for physiologically relevant processes,
we applied a Bayesian statistics model to the rawKSR data set
(see Materials and methods). For this analysis, we hypothe-
sized that a kinase and its physiologically relevant substrate(s)
are more likely to share similar tissue expression patterns,
localize to the same subcellular compartment, and/or physi-
cally interact with one another, either directly or indirectly
(Supplementary Figure 7). We then assembled two training
sets: (1) a positive set composed of 1103 known KSRs curated
from the literature and (2) a negative set devoid of known
protein kinases. Comparing the positive and negative training
sets, we determined relative weights for the above three
features and calculated the likelihood (L score) for each of the
24046 KSRs. Using a P-value of 0.05 as a threshold,
we predicted 3656 refined KSRs (refKSRs)—involving 255
unique Kkinases and 742 substrate proteins—that were most
likely to be physiologically relevant (Supplementary Table 3).

Evaluation of refKSRs

Three lines of computational evidence suggest that the
Bayesian analysis improves the fidelity of our refKSR data set
(Supplementary Figure 8). First, the percentage of phospho-
proteins that have been confirmed in vivo—based mainly on
global MS/MS analysis—was significantly improved in the
refKSR list, increasing from 66% (1291/1967) in the rawKSR
data set to 77% (567/741) in the refKSR data set (P=7.87
% 10 ~'°). Second, cross-validation analysis revealed that the
Bayesian approach increases the recovery rate of known KSRs
over five-fold (P=1.37 x 10 ~'°). Third, the enriched functions
of the identified substrates for individual kinases showed
better agreement with the known functions of their upstream
kinases. Specifically, known functions were recovered for 53
kinases based on the enriched functions of their respective
substrates, a 2.4-fold improvement over the rawKSR data
set (P=2.1 x10""). Taken together, these findings suggest
that the refKSR set, as compared with the rawKSR set,
is significantly improved with regard to its physiological
relevance.

© 2013 EMBO and Macmillan Publishers Limited



Construction of human activity-based phosphorylation networks
RH Newman et a/

RawKSR network
24046 KSRs (289 kinases and 1967 substrates)

QOQOO0
O QOO0

In vivo phosphorylation sites
(70422 sites on 10288 proteins)

' ° . °—0 o%
Bayesian j
RefKSR network
3656 KSRs (255 kinases and 741 substrates)
Known KSRs
ComKSR network Phosphorylation motifs
4375 KSRs (255 kinases and 1139 substrates) (300 motifs for 284 kinases)
_ SE: ,‘ﬁ=B-‘-—Tf -]
R H s I
LS l=T = =3
High-resolution map
(4417 kinase-to-phosphosite relationships)
Q Q O Owm
Non-kinase
) ) e,

g O e

o [ o ° T

e pY

Figure 1 Schematic diagram of the CEASAR strategy. The rawKSR data set (upper, left panel) is composed of 24 046 KSRs identified in vitro using purified human
kinases and functional protein microarrays. This data set was used as a starting point to create a high-resolution map of human phosphorylation networks using the
CEASAR strategy. First, to identify those KSRs that are likely to occur under physiological conditions, Bayesian network analysis of known KSRs was used to derive an
algorithm that assigned a likelihood score to each of the experimentally derived KSRs in the rawKSR data set. This information was then used to construct a refined KSR
(refKSR) data set composed of 3656 novel KSRs likely to occur under physiological conditions. Finally, the refKSRs were combined with 719 known KSRs to generate
the combined KSR (comKSR) data set. The comKSR data set (middle, left panel), which consists of 4375 KSRs, was used to construct the human phosphorylation
network upon which the high-resolution map is built. Next, the rawKSR data set was combined with information about in vivo sites of phosphorylation (upper, right panel)
to determine consensus phosphorylation motifs using the M3 algorithm. Using this approach, we identified consensus motifs for 284 of the 289 kinases in our collection
(middle, right panel). Finally, information about consensus sites and in vivo sites of phosphorylation were integrated with the comKSR data set to yield a high-resolution
map of human phosphorylation networks (bottom panel). This network, which connects 4417 phosphosites on substrates to their cognate kinase, includes only those
sites that could be unambiguously assigned to a given kinase. Phosphoserine (pS), phosphothreonine (pT), and phosphotyrosine (pY) sites are denoted as red dots,
green dots, and blue dots, respectively.

To experimentally evaluate the refKSRs, we randomly detectable substrate expression, among which Kkinase-

selected 243 KSRs, involving 75 kinases and 136 substrates,
and tested their relationships in transfected cells
(Supplementary Table 4; Supplementary information). To this
end, a vector encoding a FLAG-tagged version of each
substrate was transfected into HeLa cells in the presence of
either a V5-tagged version of the cognate kinase or an empty
vector. The substrates were then assayed for kinase-dependent
changes in their electrophoretic mobility and/or protein levels
inside cells (Figure 2A). Of the 243 KSRs tested, 71 % showed
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dependent changes were observed in 76% of the cases
(Supplementary Figure 9). In contrast, for a negative control
set where no obvious phosphorylation signals were detected
in the microarray assays involving the kinase-of-interest, we
observed changes in <10% of the pairs (4/42).

Among the substrates that exhibited kinase-dependent
changes in the co-transfection assay, the most common change
observed was altered protein levels (39 and 46% of the
substrates exhibited either an increase or a decrease in protein
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Figure2 Cell-based validation of refKSRs. (A) Examples from the first round of cell-based validation experiments. FLAG-tagged substrates were co-transfected with
either a V5-tagged version of the cognate kinase or an empty vector and assayed for kinase-dependent changes in electrophoretic mobility and/or protein levels. Three
major kinase-dependent changes were observed in the substrates: mobility shift, substrate depletion (destabilization), or substrate accumulation (stabilization).
LC, loading control. (B, C) Two examples from the second round of cell-based validation studies. (B) Top panel: PKC-dependent stabilization of DDEFL1/ASAP3.
FLAG-DDEFL1 was expressed in the presence or absence of V5-PRKCB1, as described in (A). Bottom panel: HeLa cells transfected with FLAG-DDEFL1 were treated
with phorbol-12-myristate-13-acetate (PMA) for the indicated times in the presence or absence of the PKC inhibitor, G66983. FLAG-DDEFL1 was then
immunoprecipitated and probed with an antibody specific for phosphorylated PKC substrates before being stripped and re-probed with an anti-FLAG antibody. The
normalized intensity ratio for each band is shown below the lane. (C) Top panel: PKA-dependent stabilization of HLCS. FLAG-HLCS was expressed in the presence or
absence of V5-PRKACA, as described in (A). Bottom panel: HeLa cells transfected with FLAG-HLCS were treated with forskolin (Fsk) in the presence or absence of the
PKA inhibitor, H89, for the indicated times. FLAG-HLCS was then immunoprecipitated and probed with an antibody specific for phosphorylated PKA substrates before
being stripped and probed with an anti-FLAG antibody. The normalized intensity ratio of each band is shown below the corresponding lane. Overall, 15 of the 19 refKSRs

tested were validated.

levels in the presence of Kkinase, respectively). These
data suggest that many kinases may control protein stability,
either directly or indirectly. To determine whether the
observed changes in protein stability were due to direct
phosphorylation of the substrate by its cognate kinase, a
second round of validation experiments were conducted.
During these experiments, we chose to focus on the action of
endogenous kinases. Therefore, we selected 19 KSRs in which
the kinases were restricted to protein kinase C (PKC),
PKA, protein kinase B (PKB/Akt), and extracellular signal-
regulated kinase 1 (Erk1/MAPK3). These kinases were chosen
because (1) their endogenous activity can be both induced and
inhibited pharmacologically and (2) the phosphorylation of
their substrates can be readily detected using commercially
available antibodies. For instance, in the first round of
validation experiments, we observed that DDEFL1/ASAP3, a
GTPase activating protein involved in cell differentiation and
migration (Ha et al, 2008), underwent a PKC-dependent
increase in its protein levels (Figure 2B, top panel).
To determine whether these changes are correlated with
phosphorylation by PKC, we monitored the extent of
PKC-mediated phosphorylation on FLAG-tagged DDEFL1/
ASAP3 in HeLa cells in the presence of the PKC activator,
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phorbol-12-myristate-13-acetate (PMA). Within 20min of
PMA treatment, PKC-mediated phosphorylation on immuno-
precipitated DDEFL1/ASAP3 increased >3-fold, as detected
by an antibody that specifically recognizes phosphorylated
PKC substrates. Importantly, this phenomenon could be
completely inhibited by pre-incubation with the PKC inhibitor,
G06983, suggesting that endogenous PKC directly phosphor-
ylates DDEFL1/ASAP3 in cells. Interestingly, recent evidence
suggests that DDEFL1/ASAP3, which is known to regulate the
GTPase, ADP-ribosylation factor (Arf), may be involved in
cross-talk between the Arf and Ca?" signaling pathways
(Ismail et al, 2010).

In another case, co-expression of PKA caused a reduction in
the levels of holocarboxylase synthetase (HLCS), an essential
biotin ligase involved in chromatin remodeling and several
metabolic processes (Figure 2C, top). Closer examination of
this interaction revealed that PKA-mediated phosphorylation
of HLCS occurred <30min after the addition of forskolin,
a pharmacological activator of the cAMP/PKA pathway
(Figure 2C, bottom). This phenomenon was largely attenuated
by pre-treatment of the cells with the PKA inhibitor H89
(Figure 2C, bottom), supporting the notion that HLCS is
specifically phosphorylated by PKA.

© 2013 EMBO and Macmillan Publishers Limited



Overall, 15 of the 19 KSRs tested (79%) were confirmed in
the second round validation, suggesting that in most cases the
observed differences in substrate protein levels reflected direct
phosphorylation by their corresponding kinase (Supple-
mentary Table 5; Supplementary Information). Taken together,
our computational and experimental evaluations indicate that
the refKSR data set is of high quality. To take advantage of the
existing knowledge base, 741 known KSRs curated from the
literature were integrated with the 3656 refKSRs described
above to generate the combined (comKSR) data set
(Supplementary Table 6). This data set provides a foundation
for gaining new insights into the organization and function of
human phosphorylation networks.

Identification of phosphorylation motifs

As the next step of the CEASAR strategy, we developed an
integrated algorithm, termed M3 (Motif discovery based on
Microarray and MS/MS), to systematically identify phosphor-
ylation motifs (Figure 3A; see Materials and methods).
This approach combines our KSR data with in vivo phosphor-
ylation sites determined primarily by MS/MS analysis and
extracts motifs based on an iterative procedure. Because
kinase-substrate recognition is a biochemical property, we
predicted the phosphorylation motifs based on the 24 046
rawKSRs as well as the 719 known KSRs from the comKSR data
set. To this end, 13244 of the 70422 phosphorylation sites
identified by MS/MS were mapped to 1644 substrates found in
the rawKSR and comKSR data sets. Short amino-acid
sequences (i.e., 15-mers) centered about these phosphosites
were then binned into groups according to the identified KSRs.
Though it is possible that some of the sequences within a given
group contained phosphorylation sites that are recognized by
several kinases, we assumed that, among all of the 15-mers for
a particular kinase, those sequences recognized by the
kinase-of-interest carry a statistically enriched consensus
motif. Therefore, M3 is designed to utilize an iterative
approach to identify statistically enriched consensus motifs
within each group (Figure 3A; Supplementary Methods).

For a given kinase, the iterative method begins with a matrix
representing the relative occurrence of each amino acid at a
particular position in the matrix from among a group of
identified substrates (containing n  phosphopeptide
sequences) (Step 1; Figure 3A). Each phosphopeptide
sequence is given a score based on how well it matches to
the initial matrix. The top 10 sequences are then grouped
as seed sequences and a position weight matrix (PWM) is
generated (Step 2). The remaining sequences (1 — 10) are then
compared with this PWM to identify the top-matched
sequence. This sequence is then added to the seed sequences
and the PWM is updated (Step 3). The entire process is
repeated until the best score of the remaining sequences is
below a cutoff, which is determined based on the distribution
of matching scores for random sequences, or until the
number of seed sequences is equal to the number of substrates
of the kinase determined during the phosphorylation assay
(Step 4). In the case of dual-specificity kinases, we separately
considered motifs that contained pS/T or pY sites. Using
this approach, we identified 300 consensus motifs for 284
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human kinases, representing 55% of the human kinome
(see Supplementary Information for the PWM of the
300 motifs).

To independently validate the identified phosphorylation
motifs, we compared our predicted phosphorylation motifs for
24 kinases with those obtained using a positional scanning
peptide library (Hutti et al, 2004; Mok et al, 2010). Comparison
of PWMs of the motifs identified by the two approaches
revealed that 75% (18/24) of the motifs were significantly
similar to one another (Figure 3B; Supplementary Figure 10).
This high correlation stands in contrast to a randomized
motif set, which yielded only 5% matching motifs above
the same cutoff (Supplementary Figure 11). Furthermore, a
comparison with the literature recovered 48 additional motifs
that resemble those predicted using a different approach
(Supplementary Figure 12; Miller et al, 2008). These results
suggest that the motifs identified by the M3 approach
are reliable.

A high-resolution map of human phosphorylation
networks

Finally, to create a high-resolution map of human phosphor-
ylation networks that joins each kinase in the network to its
downstream substrates at specific phosphorylated residues,
we integrated the information about both phosphorylation
motifs and in vivo phosphorylation sites into our comKSR data
set. The resulting phosphorylation map connects 230 kinases
to 2591 in vivo phosphorylation sites in 652 substrates,
representing 4417 kinase-to-phosphorylation site relationships
(see Supplementary Information for a Cytoscape session file
illustrating the phosphorylation networks). While 758 phos-
phorylation sites with known upstream kinases were correctly
connected to their respective kinases, the other 3659 relation-
ships represent newly identified connections (Figure 4A).

To experimentally evaluate the fidelity of these newly
identified connections, we examined what effect mutation
of the predicted phospho-acceptor site had on the substrates
in the presence of kinase for three selected KSRs
(see Supplementary Information). For example, using the
cell-based assay described above, we observed that the
PKA-dependent increase in DAXX protein levels was largely
abolished when Ser688 was mutated to Ala (DAXXS%%84)
(Figure 4B). Similar phenotypes were also observed for the
other two sets (Figure 4B). To evaluate the sensitivity of our
predictions, we also selected a negative control set consisting
of the KSR, PAK1 —DAXX. Though it recognizes a consensus
motif (RxS) that is similar to that of PKA (RxxS) and also
promotes the accumulation of DAXX, PAK]1 is not predicted to
phosphorylate DAXX on Ser688 in the high-resolution map.
Consistent with this notion, the S688A mutation had no effect
on DAXX protein levels in the presence of PAK1 (Figure 4B),
suggesting that PAK1 promotes the accumulation of DAXX by
phosphorylation of a residue(s) other than S688. To determine
whether mutation of the predicted residues has a direct impact
on the extent of kinase-mediated phosphorylation, we
conducted in vitro phosphorylation reactions using purified
wild-type (WT) and mutated substrate proteins. As illustrated
in Figure 4C, the two predicted site-specific KSRs, as well as the
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Figure 3 Identification of phosphorylation motifs by M3. (A) To predict consensus phosphorylation motifs for the kinases in our collection, we first obtained all known

phosphorylation sites on the substrates of a given kinase (e.g., CAMK2D) as foreground. Likewise, the phosphorylation sites in all human proteins were collected as
background (Step 1). Each site in the foreground was then compared with the observed and expected frequency matrix and the sites exhibiting the best scores were
included as seed sites (Step 2). The foreground frequency matrix was then updated with the seed sequences and the remaining sequences compared with this matrix to
identify the top-matched sequence. The resulting sequence was then added to the seed sequences and the matrix was updated (Step 3). The entire process was
repeated until the best score of the remaining sequences was below a cutoff or until the number of seed sequences was equal to the number of substrates of the kinase
determined during the phosphorylation assay (Step 4 and Step 5). The final set of sites was used to derive the consensus sequence of the kinase (Step 6).
(B) Comparison between motifs generated using M3 and scanning peptide array approaches. Representative motifs identified by M3 (right) and peptide library (left)
approaches are shown. For each example, the similarity score between the motifs generated using the two methods, along with the corresponding P-values,
are tabulated to the right.

PAK1 —»DAXX-negative control, behaved as predicted.
Taken together, these results suggest that our high-resolution
map of human phosphorylation networks is of high quality.

To our knowledge, this is the first map of human phos-
phorylation networks at amino-acid resolution based solely
on experimental data.
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Construction of human activity-based phosphorylation networks
RH Newman et a/

o

Hap. ,

T215, S383

.MAHK 1

7‘908

B FLAG-sub ~ PRKAR1AS77 CBLS900 DAXXS688 DAXXS688
V5-kinase =~ PRKACA MAPK15 PRKACA PAK1
Sub (WT) + + - - + + - - + + - - + + - -
Sub (MT) - - + + - - + + - - + + - - 4+ +
Kinase - + - + -+ -+ -+ - 4+ -+ -+
-FLAG '

LC

6
4
2
0

e 5 - ;;}E ﬁas : ﬁﬁs

Phosite TRTDSREDE VSISSPAHV ~ TRVDSPSHG TRVDSPSHG

C PRKAR1AS77 DAXXS688 DAXXS688
PRKACA PRKACA PAK1

WT MT WT MT WT MT

0.8
0.6
0.4
0.2

0

WT MT WT MT WT MT

Figure 4 A high-resolution map of the human phosphorylation network. (A) A high-resolution map in which in vivo phosphorylation sites, predicted to be
phosphorylated by an upstream kinase(s), are annotated on the edges representing the KSRs (see inset). Blue edges represent the KSRs obtained in this study, while
gray edges denote KSRs curated from the literature. Orange and green nodes represent kinase and non-kinase proteins, respectively. A searchable version of this
network can be found at phosphonetworks.org. (B) Cell-based validation of phosphorylation site predictions. The mutated site is indicated by superscript. For each lane,
the signal intensity (o-FLAG) was first normalized to that of the loading control (LC) and then compared with the ‘substrate alone’ signal for each set. The blue and red
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to recognition by the kinases are underlined and the mutated site is highlighted in red. (C) In vitro validation of phosphorylation site predictions. The signal intensity of
each radio-labeled band is plotted as in (B). Error bars represent the standard error of at least two independent experiments.
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Identification of intermediate kinases in signhaling
pathways

Despite recent advances in the global analysis of cellular
signaling pathways, our understanding of most signaling
networks is still largely incomplete due to the existence of
many as yet unidentified components and indirect connections
within these networks. We hypothesized that, based on the
large number of new KSRs identified in this study, we could
identify such ‘missing links’” by superimposing our data onto
annotated signaling pathways derived from the literature or
databases (e.g., KEGG). Moreover, when combined with
information derived from our high-resolution phosphorylation
map, this type of analysis can offer insights into the
physiological consequences of the specific phosphorylation
events underlying these connections. For instance, Btk is
known to play an important role during BCR signaling while its
binding partner, ARID3A, has been implicated in the tran-
scriptional regulation of the IgH locus (Lin et al, 2007). Recent
studies suggest that functional Btk is required for ARID3A
activity (Rajaiya et al, 2005). However, no tyrosine phosphor-
ylation sites have yet been identified in ARID3A, suggesting
that Btk likely does not phosphorylate ARID3A directly
(Rajaiya et al, 2006). Based on our refKSR data set, we
identified PKA as both a substrate of Btk and an upstream
kinase of ARID3A, raising the possibility that PKA serves as an
intermediary between Btk and ARID3A.

To test this hypothesis, we first validated the Btk —» PKA and
PKA — ARID3A KSRs in HeLa cells using the cell-based assays
described above. In the case of PKA — ARID3A, either ectopic
expression of PKA or activation of endogenous PKA led to
increases in both ARID3A protein levels and the extent
of PKA-mediated phosphorylation on ARID3A (Figure 5A-C;
Supplementary Figure 13A; Supplementary Information).
Based on the high-resolution phosphorylation map, we
identified two putative sites of PKA-mediated phosphorylation
on ARID3A: a strong consensus site at S353 and a weaker one
at S333 (Supplementary Figure 13B). Interestingly, though
both sites appear to be phosphorylated by PKA inside cells,
only S353 contributes to the stabilization phenotype
(Figure 5D; Supplementary Figure 13B).

On the other hand, co-expression of Btk with PKA resulted
in a change in PKA’s migration pattern suggestive of PKA
activation (Figure SE). Consistently, overexpression of Btk
alone caused a global increase in phosphorylated PKA
substrates (Supplementary Figure 13C) and phenocopied
PKA with respect to its effect on ARID3A protein levels
(Figure 5B), suggesting that Btk-mediated phosphorylation
might enhance PKA’s kinase activity. To determine how Btk-
mediated Tyr phosphorylation might affect the activity of PKA,
we first demonstrated that Btk preferentially phosphorylates
PKA on Y331 in vitro, as predicted by the high-resolution map
(Figure S5F). We then showed that mutation of this site to Phe
(PKAY**'F) completely abolishes the ability of Btk to enhance
PKA-mediated phosphorylation of ARID3A (Figure 5G).
Together, these data suggest that Btk directly phosphorylates
PKA on Y331, leading to enhanced PKA kinase activity.

To further characterize this connection in a more physiolo-
gically relevant context, we examined the relationships
between endogenous Btk, PKA, and ARID3A during BCR

8 Molecular Systems Biology 2013

signaling in Ramos B cells. First, we observed that
Tyr phosphorylation of PKA, which increased ~ 2-fold
10 min after BCR activation, was prevented by pre-treatment
of the B cells with the Btk-selective inhibitor, terric acid (TA)
(Kawakami et al, 1999; Figure 5H). The observed increase in
Tyr phosphorylation on PKA correlated with an increase in the
extent of PKA-mediated phosphorylation on a portion of
cellular PKA substrates, including ARID3A (Figure 51 and J).
Importantly, ARID3A phosphorylation was inhibited by
pre-treatment with either H89 or TA, suggesting that this
phenomenon is both PKA and Btk dependent (Figure 5J).
Moreover, PKA-mediated phosphorylation appears to promote
the accumulation of ARID3A in B cells, as evidenced by a
substantial increase in ARID3A levels <1h after BCR
activation (Supplementary Figure 13D).

Interestingly, aside from its effect on ARID3A protein levels,
we found that PKA activation by Btk may also have other
important roles during BCR signaling. For instance, pre-
treatment of B cells with H89 both slowed the onset and
reduced the magnitude of Ca*" release from intracellular
stores in a dose-dependent manner following BCR activation,
leading to a pronounced reduction in the extent of Ca* * influx
(Figure 5K). This is consistent both with Btk’s known role in
the regulation of Ca® " signaling downstream of the BCR and
with PKA’s ability to regulate Ca®" dynamics in other cell
types (Ni et al, 2011).

Taken together, our in-depth characterization of PKA as the
missing link between Btk and ARID3A demonstrated a new
mode of enhancing PKA activity via Tyr phosphorylation by
Btk, as well as a potentially new role for PKA during BCR
signaling.

Discussion

Although other high-throughput approaches, such as yeast
two-hybrid, TAP tag-coupled MS/MS, and synthetic genetic
screening, have been used to construct phosphorylation
networks, the edges in the networks generated by these
methods do not necessarily represent direct KSRs (Zheng et al,
2000; Olsen et al, 2006; Yang et al, 2006; Molina et al, 2007;
Wang et al, 2007; Mathivanan et al, 2008; Fiedler et al, 2009).
Furthermore, though various shotgun MS/MS approaches
have identified an extremely large number of phosphorylated
residues in mammals, the immediate upstream Kkinases
targeting these sites have not been experimentally determined
in most cases. To address these challenges, we developed an
effective strategy, termed CEASAR, which combines experi-
mentally derived KSRs obtained from phosphorylation reac-
tions performed on protein microarrays with sophisticated
data integration and thorough validation to generate a high-
resolution map of human phosphorylation networks. Impor-
tantly, our activity-based networks complement and even
extend the information content provided by many of the
approaches alluded to above. This synergy is demonstrated
both by the development of the M3 algorithm, which combines
microarray data with MS data to predict consensus phosphor-
ylation motifs, and by the construction and application of the
high-resolution phosphorylation map, which combines the
information about KSRs with phosphorylation motifs and

© 2013 EMBO and Macmillan Publishers Limited
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Figure 5 Characterization of PKA as a missing link between Btk and ARID3A. (A) Kinase-dependent changes in FLAG-tagged ARID3A (F-ARID3A) protein levels in
the presence or absence of V5-PKA in Hela cells. LC, loading control. (B) Effect of endogenous PKA activation on ARID3A protein levels. (C) Validation of the
PKA-ARID3A KSR using coupled IP-immunoblot analysis in HeLa cells. a-pPKA sub, an antibody against phosphorylated PKA substrates. (D) Identification of S353 as
the phosphorylation site that contributes to PKA-mediated stabilization of ARID3A. (E) Validation of the BTK-PKA KSR in HeLa cells. (F) Identification of PKA Y331 as a
Btk phosphorylatlon site. Left: Btk phosphorylation motif (Logo) generated by the M3 algorithm and the predicted site of Btk-mediated phosphorylation on PKA.
Formatting is as described in Figure 4B. Right: In vitro kinase assays using recombinant Btk and WT PKA and PKAY®®'F (MT) as substrates. The extent of Tyr
phosphorylation and total PKA in each lane was determined using antibodies against pTyr residues (a-pTyr) and PKA (o-PKA), respectively. (G) Effect of Btk-mediated
phosphorylation on PKA activity in vitro. Recombinant WT PKA was first incubated in the presence (red) or absence (blue) of Btk in reaction buffer containing cold ATP.
After Btk removal, PKA was then incubated with recombinant ARID3A in the presence of [y->2P]-ATP and phosphorylated ARID3A was measured. The same assay was
repeated using mutant PKA gPKAY331F in the presence of Btk (green). n = 24 trials per condition + s.e.m.; two-tailed t-test versus PKA + Btk, PKA: *P=5.7 x 10~
MT + Btk: **P=2.2 x 10~ . (H) Btk-mediated phosphorylation of endogenous PKA following BCR activation. Each value represents the average pTyr signal mtensny,
normalized against total PKA. TA terric acid. n= 3 per condition + s.e.m.; one-tailed ttest versus F(ab’), alone ( —/+ ), untreated ( —/ — ): **P=10.009, F(ab’), + TA
(+4/4): **P=0.004. (1) Effect of BCR activation on PKA activity. (J) PKA mediated phosphorylation of ARID3A following BCR activation. The average pPKA substrate
signal intensity, normalized against total ARID3A, is shown below each lane. n= 4 per condition + s.e.m.; one-tailed t-test versus F(ab’), alone (—/—/+), untreated
(—/—/-):**P=0.003, F(ab'), +H89 (—/+/+): *P=0.007, F(ab’),+ TA (+/—/+): *P=0. 019 (K) Effect of PKA inhibition on Ca®* dynamics foIIowmg
BCR activation. Representative calcium traces of F(ab’),-stimulated Ramos B cells in the presence of various concentrations of H89 were obtained using Indo-1 imaging.
The addition of F(ab’), is indicated by an arrow.

in vivo sites of phosphorylation to predict specific sites of
phosphorylation on a given kinase substrate.

Several lines of evidence suggest that our high-resolution
map of phosphorylation networks is of high quality. For
instance, because 758 of 1156 known site-specific kinase-
substrate interactions were recovered by our method, the
false negative rate is 1 — (758/1156) = 34.4% and the recovery
rate is 758/1156=65.6%. That being said, the possibility
exists that the sites predicted to be phosphorylated on a given
substrate are not necessarily the sites targeted by the kinase-

© 2013 EMBO and Macmillan Publishers Limited

of-interest during the protein microarray experiments. For
instance, the true target site(s) may not yet be identified by
MS/MS. Nevertheless, based on our validation experiments,
each of the 5 kinase-phosphosite interactions examined were
confirmed by protein mutagenesis experiments (including
those phosphosites identified in Figures 4 and 5), suggesting
that the false positive rate is rather low. The quality of our
networks is further demonstrated when we compared them
with other existing phosphorylation networks. For example,
NetworKIN, a phosphorylation network based on motifs
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predicted by scanning peptide arrays, included 7143 site-
specific kinase-substrate interactions (Linding et al, 2007).
After removing those kinase-substrate pairs for which either
the kinase or the substrate was associated with an outdated
ENSEMBL ID, 6338 site-specific kinase-substrate interactions
remained. Among these, 48 are known interactions, suggest-
ing that the true positive rate for NetworKIN is 0.76%
(48/6338). In contrast, our data recovered 758 known
interactions, with a true positive rate of 17.2% (758/4417).
We believe that the > 20-fold improvement in the true positive
rate of our networks can be, at least partially, explained by the
fact that we used full-length proteins, rather than peptides,
both to build the network and to extract motifs. We consider
this to be a major advantage of the CEASAR strategy. For
instance, kinase activities are constrained by substrate
accessibility within the fully folded protein structure. More-
over, additional protein interactions, which are absent in short
peptide sequences, often have important roles in substrate
recognition. On the other hand, there are also potential
deficiencies of using purified proteins, including improper
folding, artificial steric hindrance or the absence of auxiliary
factors, such as scaffolding proteins. Together, these factors
might contribute to the high false negative rate observed in the
refKSR data set (~95%).

It is interesting to note that, among those substrates that
exhibited a kinase-dependent change during the first round
of validation experiments, the majority of them (112/
132=~85%) were associated with changes in protein
stability. We believe that one explanation for this observation
may lie, in part, in the fact that a large proportion of the
substrates in our refKSR data set are composed of TFs and their
co-regulators. Indeed, phosphorylation-dependent degrada-
tion/stabilization of TFs is well documented and may be a
common mode of regulation for this class of proteins (Pahl and
Baeuerle, 1996; Whitmarsh and Davis, 2000; Gao and Karin,
2005). In support of this notion, over half (~55%) of the
substrates that underwent kinase-dependent changes in
stability were TFs, despite the fact that only ~35% of the
test set were from this family. As the knowledge base grows, it
may be possible to unambiguously identify sites of phosphor-
ylation on many of the substrates in our refKSR data set
(thereby expanding the number of kinase-phosphosite rela-
tionships present in the high-resolution map). In those cases
where the substrate undergoes kinase-dependent changes in
stability, it will be interesting to see if sequence motifs
involved in the regulation of protein stability, such as
phospho-degrons (in the case of degradation) (Dinkel et al,
2012) or a SUMOylation consensus site (in the case of
stabilization) (Sampson et al, 2001), are in the vicinity of the
phosphorylation site, which suggest potential cross-talk
between different PTMs.

We envision that our large data set, which we have made
freely available through an interactive website at http://
phosphonetworks.org, will serve as a valuable resource for the
research community in several ways. For instance, aside from
generating more human KSRs and more phosphorylation
motifs than all previous studies combined, this study
also provides a blue print for mapping kinase-dependent
connections and serves as a foundation for the development of
new tools, such as genetically targetable kinase activity
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reporters and phosphorylation site-specific antibodies, that
promise to offer important insights into the regulation
of kinases and their downstream substrates. Likewise, the
large number of human KSRs identified in these studies can be
used in conjunction with KSR data sets from other species
(e.g., S. cerevisiae) to explore the extent to which kinase-
dependent signaling networks are conserved across species
(Hu et al, 2013). Moreover, in the future, it should be possible
to integrate information from the human phosphorylation data
set with that from other large-scale studies conducted on the
proteome scale to gain a greater understanding of the
organization and regulation of the signaling networks that
govern cell physiology in human health and disease. Finally, in
accord with recent initiatives put forth by the Human
Proteome Organization (HUPO) (Paik et al, 2012), the CEASAR
strategy developed in this study can be extended to construct
signaling networks mediated by other post-translational
modifications, such as ubiquitylation, SUMOylation, acetyla-
tion, and methylation, to gain global insights into a wide
variety of signaling processes.

Materials and methods

Kinase purification

Two hundred and eighty-nine non-redundant human kinase genes
obtained from the Invitrogen Ultimate Human ORF collection and
other sources were cloned into the yeast expression vector, pEGH-A,
using the Gateway cloning system (Invitrogen). Each clone was
verified by restriction digestion. Each kinase was expressed as a GST
fusion in the budding yeast, Saccharomyces cerevisiae, and purified
using glutathione-sepharose affinity chromatography, as described
previously (Zhu et al, 2001).

Phosphorylation assays using protein microarrays

Human protein microarrays were generated as described previously
(Hu et al, 2009). Each microarray contained 4191 unique proteins
consisting of a collection of human proteins including TFs,
RNA-binding proteins, DNA repair proteins, protein kinases and
mitochondrial proteins as well as a panel of proteins involved in
various other cellular processes. To identify in vitro substrates for each
kinase, a protocol similar to that described by Zhu et al (2009), which
involves radioactivity-based detection, was used.

Bayesian approach

To predict KSRs that are likely to occur in vivo, we used a naive
Bayesian approach (Jansen et al, 2003; Hu et al, 2010) to integrate
information about tissue-specific gene expression, subcellular
localization, and PPIs. For the positive data set, we collected 1103
experimentally validated kinase-substrate pairs from the literature and
the PhosphoELM database (phospho.elm.eu.org). We also constructed
an artificial data set as a negative data set that contains 10 000 protein
pairs where no kinases were included in the set. The relative weights
for these three features were learned from the known data sets and
applied to each of the rawKSRs.

M3 algorithm

To predict consensus phosphorylation motifs for the kinases in our
collection, we integrated the following data sources: the rawKSRs
determined by protein microarray, the phosphorylation sites deter-
mined by MS/MS, and the phosphorylation sites with known upstream
kinases obtained from the literature. Each site was mapped to the
protein sequences of substrates identified in the rawKSR data set and
subject to an iterative process by the M3 algorithm.

© 2013 EMBO and Macmillan Publishers Limited
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