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in DALIGNER17, the computational cost for local alignments 
between two long SMS reads, or between an SMS read and a ref-
erence genome, is still high16,17. The local alignment of excessive 
candidate matches takes up to 70% computational time in pair-
wise and reference genome alignment of SMS reads. Recently, the 
Canu14 pipeline employed a term frequency–inverse document 
frequency (tf-idf) k-mer-weighting method to reduce the effects 
of repetitive k-mer matches. However, Canu did not consider the 
arrangement of k-mer pairs. Therefore, there are  still many exces-
sive matches.

Meanwhile, many SMS applications—such as SMS read cor-
rection and genome assembly—need only a limited number of 
matched reads15,18,19. Because of the repetitive nature of genomes, 
the number of matched k-mer pairs does not correspond to the 
overlapping lengths and so cannot be used as the criteria to 
directly select high-quality, reliable matches. Local alignments 
are needed to screen a large number of candidate matches, which 
dramatically increases the computational cost of SMS read cor-
rection and genome assembly.

Here, we developed a pseudolinear alignment scoring algorithm 
to filter excessive alignments (Fig. 1 a–e). Our algorithm uses the 
distance difference factors (DDFs) to score matched k-mer pairs 
in two steps (see Online Methods). The score of the seed k-mer 
pair is supported by all matched k-mer pairs and their interval 
distance. Thus, the scores represent the global matching informa-
tion between two SMS reads, or between an SMS read and the ref-
erence genome. The scores of seed k-mer pairs between the read 
pairs grow linearly with their overlapping lengths in PacBio data 
from four different genomes11 (Fig. 1f). Therefore, by selecting 
SMS read pairs with high scores, we can filter out noninformative 
candidate alignments. After filtering by DDF scoring, we reduced 
candidate alignments by 50% to 70% before proceeding with fur-
ther local alignment using diff (Fig. 1g), which made the aligner 
2–3× faster than those without DDF score filtering.

Based on our DDF alignment scoring algorithm, we developed 
a fast aligner named MECAT, which can be run with or without 
local alignment. We first evaluated the performance of MECAT 
aligner on pairwise alignment. We compared MECAT aligner 
to two SMS read pairwise alignment tools, MHAP(v2.12)11 and 
DALIGNER17 in FALCON (v0.40)12. For five PacBio data sets, 
MECAT aligner with local alignment is faster than both MHAP 
and DALIGNER (Table 1). For the PacBio data of large human 
genome, MECAT aligner is 5× faster than MHAP-fast, and 17× 
faster than DALIGNER. For three Nanopore data sets, MECAT 
aligner with local alignment is faster than both MHAP-fast and 
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MHAP-sensitive, but it is slower than DALIGNER (Table 1). On 
account of the high error rate of Nanopore data, we lowered the 
threshold in MECAT to obtain enough candidate matches for later 
error correction, and this slowed MECAT. Meanwhile, MECAT 
aligner without local alignment was much faster than other align-
ers for both the PacBio and Nanopore data sets (Table 1). Another 
important benefit of our DDF alignment score is that we can select 
reliably matched reads for a given read template based on DDF 
scores only. Thus, we can omit the local alignment step when only 
top candidate matches are needed, and this can significantly reduce 
computational cost for SMS applications. In addition, MECAT used 
a similar amount of memory as DALIGNER but much less than 
MHAP (Supplementary Table 1).

We evaluated the sensitivity and precision of pairwise align-
ment of the aligners using three simulated PacBio data sets of 
Escherichia coli, yeast, and human chr1 (Supplementary Notes 1 

and 2 and Supplementary Table 2). Since the starting and ending 
positions of each simulated read in the reference genomes were 
known, we could calculate the true pairwise overlap relationships 
between all the reads. The sensitivity of DALIGNER17 is the best 
among the four aligners, but its precision is the lowest. The preci-
sion and sensitivity of DALIGNER became highly unbalanced for 
the human chr1 data set (9.1% precision). Conversely, MHAP11 
has high precision but low sensitivity. The sensitivity of MECAT 
aligner is consistently higher than that of MHAP, while similar 
precision is maintained. Compared to DALIGNER, MECAT 
aligner has higher precision but lower sensitivity. MECAT aligner 
achieved a good balance between sensitivity and precision for 
both small and large genomes.

The DDF alignment score is sensitive to the overlap length 
between read and reference genome; thus, MECAT aligner 
is also suitable for aligning SMS reads to a reference genome.  
We compared MECAT aligner to BLASR (v1.3.1.142244)15 in 
SMRT analysis (v2.30) and BWA-mem (v0.7.12-r1044)18 for refer-
ence genome alignment (Supplementary Note 3). For four PacBio 
data sets of small genomes (E. coli, yeast, Arabidopsis thaliana  
and Drosophila melanogaster), MECAT aligner was 35–65× 
faster than BLASR and 18–70× faster than BWA-mem (Table 1).  
For the PacBio human genome data set, MECAT aligner was 
12× faster than BLASR and 4× faster than BWA-mem. For three 
Nanopore data sets of small genomes (E. coli, Bacillus anthracis, 
and Yersina pestis), MECAT was 2–5× faster than BLASR and four 
to 6× faster than BWA-mem. The mapping overlap rates of the 
three algorithms were as high as 95–99% for the same alignment 
positions (Supplementary Note 3 and Supplementary Fig. 1),  
which showed the high confidence of MECAT aligner. We com-
pared the sensitivity, precision, and coverage of the aligners 
using 20× simulated PacBio data sets of E. coli, yeast, and human 
genomes (Supplementary Table 3). Compared with BLASR15 and 
BWA-mem18, MECAT aligner mapped a slightly lower number of 
reads to the reference genome, but it mapped more reads correctly 
for all three data sets. MECAT also has similar read coverage at 
regions with large structural variants (Supplementary Note 4 
and Supplementary Table 4). MECAT aligner can rapidly align 
the SMS reads to the reference genome while maintaining high 
sensitivity, precision, and coverage.

The high-error SMS reads must be corrected before they are 
used in other applications. Corrected reads are usually con-
structed from consensus of a number of matched reads. The 
MECAT aligner allows us to quickly select candidate reads 
without local alignment. We developed a fast error correction 
tool in MECAT by using our fast aligner (see Online Methods).  
Experiments showed that the correcting speed of MECAT was 
4–10× higher than those of FC_Consensus14, and 5–21× higher 
than those of FalconSense12 for four PacBio data sets. For three 
Nanopore data sets, the correcting speed of MECAT was 1.06~7× 
higher than those of FC_Consensus and 1.6~11× higher than 
those of FalconSense. Furthermore, MECAT obtained higher  
correction accuracies for most data sets (Supplementary Note 5 
and Supplementary Table 5).

Because the DDF alignment scores are correlated with the over-
lap size between the two reads, we were able to replace the slow 
overlapInCore in Canu (v1.0) with MECAT aligner to develop a 
fast de novo assembly pipeline. The MECAT aligner significantly 
reduced the computational time for contig construction. The 
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figure � | Principle and property of DDF scoring algorithm in MECAT 
alignment. (a) Alignment of k-mers between the blocks of two SMS reads. 
LR, long read. (b) Pairwise scoring, using DDF, between k-mer pairs in 
each block pair (Block 2 in a is provided as an example). (c) Selecting the 
seed k-mer pair with the highest score (indicated by pink flag).  
We randomly select one seed pair if multiple k-mer pairs have the same 
score. (d) Scoring the seed k-mer pair using k-mer pairs in other block 
pairs. (e) Aligning two reads from the seed k-mer pair. (f) The relationship 
between the overlap length of two reads and their DDF scores from the 
four SMRT data sets (E. coli, yeast, A. thaliana, and D. melanogaster).  
(g) Comparison of the numbers of alignment candidates with and without 
filtering with the DDF score. The box plots the lower quartile (Q1), median 
(m or Q2), and upper quartile (Q3) of numbers of alignment candidates. 
The top whiskers indicate the maximum value, and the bottom whiskers 
indicate the minimum value.
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reductions of computational costs in overlapping, error correc-
tion, and contig construction steps enabled the MECAT de novo  
assembler to reconstruct the human CHM1 genome in 7,737 
central processing unit (CPU) hours, which is 24.9× faster than 
PBcR-MHAP-fast11, 56.3× faster than PBcR-MHAP-sensitive11 
and 5.1× faster than the Canu (v1.3)14 (Supplementary Notes 
6 and 7 and Supplementary Table 6). We also used MECAT 
to assemble a diploid Han Chinese genome from 102× PacBio 
sequencing reads on a 32-core computer in 25 d (Supplementary 
Notes 8 and Supplementary Table 7). MECAT produced refer-
ence-quality assemblies using both PacBio and Nanopore reads 
(Supplementary Notes 6–8).

methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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table 1 | Computing performance of alignment of SMS reads

data set Pairwise alignment time (core h) reference alignment time (core h)

mhaP (fast)
mhaP 

(sensitive) daligner mecat mecat(l) blasr bWa mecat(l)

E. coli 0.58 1.38 0.78 0.�� 0.55 2.71 1.56 0.04
Yeast 1.26 4.65 2.9 0.�7 0.48 12.61 6.81 0.36
A. Thaliana 0.79 2.11 2.88 0.�6 0.43 167.45 154.89 2.45
D. melanogaster 0.76 1.77 2.89 0.�6 0.38 160.42 216.3 3.08
Human 1.36 3.89 2.91 0.�� 0.24 7184 2,511.33 553.21
E. coli* 1.44 1.57 0.13 0.�� 0.56 0.25 0.28 0.05
B. anthracis* 2.63 3.05 2.52 0.�9 2.10 0.90 1.48 0.22
Y. pestis* 1.05 1.47 0.35 0.�7 0.50 0.34 0.68 0.14

*Denotes the Nanopore reads. MECAT denotes aligner without local alignment, and MECAT(l) denotes aligner with local alignment. The reported time include both index construction and align-
ment time. Bold font indicates best performance.
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online methods
Indexing and matching of reads. The finding of potential 
matches between reads is based on the matching of k-mers (sub-
strings with the length of k) in the reads. A read r of length L 
has a total of L − k + 1 k-mers. We first indexed the reads using 
a hash table with the k-mers as key. We considered the overlap-
ping k-mers between the blocks of reads. We broke each read into 
multiple blocks; each block had a length B, which was usually 
1,000 to 2,000 bp. The values in the hash table are the positions 
of k-mers in the blocks of reads.

To search for the matched reads, we scanned the k-mers in 
blocks of reads and found the matches in the hash table. We broke 
the reads into blocks of the same length B. To reduce the compu-
ter time, we sampled the k-mers in each search block. We used a 
sliding window with the length of sl along each block. Thus, the 
number of searched k-mers was approximately 1/sl of the number 
of total k-mers from the reads. A typical value of sl is 10. A search-
ing block is matched to an indexing block if the number of their 
overlapping k-mers is greater than a predefined threshold m. The 
two reads are considered matched if at least a pair of blocks is 
matched between them.

Given two read blocks of length B, the number of k-mers sam-
pled from the search block is (B/sl − 1). With O as the overlapping 
length of a pair of matched blocks, O ≤ B, the expected number of 
matched k-mers in O is11

E M P P P P
O

P
B

[ ] ( )match match random match random

random

sl
= + − −





+

1

−−
−





O
sl

1

where Prandom is the probability of the presence of a random  
k-mer, and Pmatch is the probability that two k-mers are matched. 
Because the block length B is fixed, for a given error rate and 
no repetitive sequence, the number of matched k-mers between 
two blocks grows with the overlapping length O. For a highly 
matched block pair, Pmatch >> Prandom, the expected number can 
be roughly estimated as: 

E M P
O

[ ] ( )match match sl
= 2

Filtering false-matched reads using the distance difference fac-
tor score. We developed a new pseudolinear scoring algorithm to 
filter the excessive, noninformative matched reads. Our scoring 
algorithm has two steps. The first step is the mutual scoring. For 
each matched read pair, we first randomly select a matched block 
pair and mark it. Then, we score the matched k-mer pairs in this 
matched block pair. Designating pi, pj as the positions of i-th and 
j-th k-mer in one block, and p′i, p′j as the positions of i-th and j-th 
k-mer in another block of a matched pair, we defined the distance 
difference factor (DDFi,j) between i-th and j-th k-mer as 

DDFi j
i j

i j

p p
p p, ( )= −

−

′ − ′
1 3

If DDFi,j < ε, which indicates that both k-mers are supporting 
each other, we increase the scores of both k-mers by 1. The ε is 
set to 0.3; by calculating the DDF between all the possible pairs 

(1)(1)

(2)(2)

(3)(3)

of k-mers, we obtained scores for all the overlapping k-mers of 
matched blocks. We only used the nonrepetitive k-mer pairs 
in our scoring. If a k-mer was matched more than once, it was 
excluded from scoring. If the score of a k-mer with the highest 
score was significant (greater than the threshold), we set it as the 
seed position for future alignment. If there were multiple k-mers 
with the same score, we randomly selected one as the seed.

The second step was the extension scoring step. To increase 
the reliability of the seed and reduce the computation of the 
whole scoring process, we extended the scoring process from the 
selected block pair to its neighbor matched block pairs after a seed 
k-mer was obtained. For each overlapping k-mer in the neighbor 
block pair, we calculated the DDF between the k-mer and the 
seed k-mer in the original block pair. If DDF < ε, we increased 
the score of the seed k-mer by 1. If 80% of the DDF values of the 
overlapping k-mers in a neighbor block pair satisfied DDF < ε, 
we marked the block and did not score the k-mers in this block 
pair. If there were still unmarked matched block pairs after one 
loop of the mutual and extension scoring processes, we continued 
the scoring process on those block pairs. The mutual scoring is 
conducted in O(N2) time, and the extension scoring is conducted 
in O(N) time, where N is the number of k-mer matches. Because 
the number of k-mers in mutual scoring is small, the overall scor-
ing process can be performed in pseudolinear time.

Pairwise alignment of single-molecule sequencing reads. For 
pairwise alignment, we set the block length to 2,000 bp. After 
scoring the matched k-mers between two SMS reads, we sorted 
the k-mers based on their scores. Then, we used the top-ranked 
k-mers as seeds to perform the local alignment of the two reads. 
If the overlapped length between the two SMS reads was longer 
than 2,000 bp, and the mismatch rate of the overlapped sequence 
was less than twice that of the SMS read error rate, we consid-
ered it a match and output the alignment results. All the detailed 
parameters are described in Supplementary Note 9.

Aligning single-molecule sequencing reads to a reference 
genome. The procedure of aligning SMS reads to a reference 
genome is similar to that of pairwise alignment. We indexed the 
reference genome sequence and searched the reads from the index 
table. We first broke the reference genome into blocks with length 
B and indexed the k-mers in each block. Then, we broke the reads 
into blocks of the same length B and sampled the k-mers with a 
search in the index table. The matched k-mers between a read and 
the reference genome were also scored. The top-ranked k-mers 
were used as seeds to perform further local alignment.

To obtain high sensitivity of the alignment of the SMS reads 
to a reference genome, and to keep the computational cost low, 
we used a two-step approach. In the first step, we used the block 
length B of 1,000 bp and the k-mer sampling step length sl of 20 
to align reads to the reference genome. Because some SMS reads 
have less matching k-mers, or the distribution of their matched k-
mers is uneven, these SMS reads cannot find a matching position 
in the first step. In the second step, we doubled the block length B 
to 2,000 bp and halved the k-mer sample step length sl to 10; and 
we realigned the unmatched reads. We found the matches for a 
considerable number of reads in the first step and for most of the 
reads after the second step. Because the computational cost for 
the second step is higher than that for the first step, our two-step  



©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4432 nature methods

approach allowed us to reduce the computational cost while  
maintaining high sensitivity. All the detailed parameters are 
described in Supplementary Note 10.

If there is a large structure variant in a read, the local align-
ment may be interrupted at the structure variant, which leads to 
unmapped tails of reads. If unmapped tail of a read was longer than 
2,000 bp, we employed another step to find the alignment of this 
soft-clipped tail. For each read having soft-clipped tail, we selected 
its three longest matches in the reference genome. For each refer-
ence match of the read, if there were unmatched blocks close to the 
match, we examined whether the clipped tail could be matched to 
those unmatched blocks in reference genome. We scored the k-mer 
pairs between those unmatched blocks and clipped tail. If the score 
of top ranked k-mers was higher than the threshold, we performed 
the local alignment again to confirm the alignment.

Correcting single-molecule sequencing reads. Generally, there 
are two steps in correcting SMS reads. The first step is pairwise 
overlapping between SMS reads. The second step is constructing 
the correct read from the consensus of its related alignments. In 
MECAT, we adopted several approaches to improve the efficiency 
and accuracy of the consensus process. For the first step, we used 
MECAT aligner without local alignment for initial pairwise over-
lapping. The output of overlapping was written into multiple files. 
Each file included the matching information of 200,000 reads. 
Then, for each read template, we sorted its matches in order of 
descending DDF scores. We performed local alignments between 
the template read and matched reads starting from the highest 
DDF score. To eliminate the effects of chimeric reads and repeat 
subsequences, we filtered the alignment if its overlapped subse-
quence was less than 90% of the length of shorter read in the pair. 
The local alignment process was stopped once we collected 100 
overlaps or had aligned all matched reads. Since the DDF score 
was a coarse estimate of the overlap length, by performing local 
alignment between read template and high-scored matches only, 
we were able to collect enough alignments for correction as soon as 
possible while avoiding the computing of noninformative repetitive 
overlaps. This significantly accelerated the error correction.

In the second step, to further improve the consensus preci-
sion while maintaining high efficiency, we developed a new 
adaptive SMS read error correction method by combining the 
principles from both DAGCon and FalconSense. We summarized 
the pairwise alignments to construct a consensus table with the 
counts of matches, insertions, and deletions. Trivial regions with 
consistent matches were designated as match_count/(match_
count+deletion_count)>0.8 and no significant insertion occur-
ring (insertion_count<6); consistent deletions were designated 
as: deletion_count/(match_count+deletion_count)>0.8 and no 
significant insertion occurring (insertion_count<6). Thus, we 
were able to determine the consensus base according to the count. 
For complicated regions with insertion (insertion_count≥ 6), we 
constructed a local POG and solved the consensus using dynamic 
programming. Because the complicated regions are generally 
fewer than ten bases, consensus sequences can be found quickly 
from the small POG. The details of this algorithm are described 
in Supplementary Note 11 and Supplementary Figure 2.

In the second step of read correction, performing the local align-
ments between the template and matched reads requires random 
access to stored reads. DAGCon and FalconSense store the reads 
on the hard drive, which does not support random access. The 
slow loading process of the reads in DAGCon and FalconSense led 
to only a 20% CPU usage. To accelerate the correction process, we 
loaded all the reads into memory, which supports random access. 
We also encoded each base using 2 bits to reduce memory usage. 
Thus, the memory occupation of MECAT is approximately 1/4 
of the total read size. Loading reads to memory renders the CPU 
usage of MECAT over 96%.

De novo assembly using single-molecule sequencing reads. 
There are three steps in genome assembly using SMS reads: 
overlapping the SMS reads to the selected template reads, cor-
recting the selected reads, and constructing the contigs using 
corrected reads. We developed two new pipelines for assem-
bling SMS reads by integrating our new alignment and error 
correction method with Canu (v1.0). In the first step of the 
MECAT pipeline, for each read longer than 3,000 bp, we per-
formed a pairwise alignment against other reads and selected 100 
matched reads with top-matched scores. During the overlapping  
of the SMS reads, we did not perform local alignment. We selected 
the top-mapped reads using the DDF scores and used the map-
ping information for the error correction step. In the second 
step of MECAT, we corrected all template reads (>3,000 bp)  
using their matched reads. Finally, we performed a pair-
wise alignment of corrected reads using the alignment tool in 
MECAT; then, we fed the results of the alignment into the ‘Unitig 
Construction’ module of Canu (v1.0) to construct the unitigs.  
Alternatively, in pipeline MECAT-CA, the corrected reads 
were fed directly into Canu, which used the overlapInCorefor  
pairwise alignment.

Evaluation. We evaluated the MECAT tool using both simulated 
and raw SMS reads from model organisms. We compared our 
alignment tool with the existing tools for pairwise alignment, 
including MHAP and DALIGNER, as well as with the tools for 
reference genome alignment, including BLASR and BWA-mem 
(Supplementary Notes 1–4). We compared our error correction 
tool with those available in Canu (v1.3) and FALCON (v0.40). 
We also systematically evaluated the assembly tools available 
in MECAT by comparing them with Canu (v1.3) and FALCON 
(v0.40). The details of these comparisons are reported in the 
Supplementary Notes 5–8.

Data availability statement. The raw sequencing data of the 
Han-1 Chinese human genome are available from GenBank 
(SRX1424851). The assembly files of the Han-1 Chinese human 
genome are available from GenBank (GCA_001856745.1). All 
source codes for MECAT and the analyses presented here are 
available from https://github.com/xiaochuanle/MECAT. The 
software and data used for this manuscript (including supple-
mentary files and scripts) are available from http://sysbio.sysu.
edu.cn/MECAT.

A Life Sciences Reporting Summary is available.

https://www.ncbi.nlm.nih.gov/sra/SRX1424851
https://www.ncbi.nlm.nih.gov/assembly/GCA_001856745.1/
https://github.com/xiaochuanle/MECAT
http://sysbio.sysu.edu.cn/MECAT
http://sysbio.sysu.edu.cn/MECAT
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    Experimental design
1.   Sample size

Describe how sample size was determined. N/A

2.   Data exclusions

Describe any data exclusions. N/A

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

N/A

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

N/A

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this All source codes for MECAT, and the analyses presented here, are available from 
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study. https://github.com/xiaochuanle/MECAT. The software and data used for this 
manuscript (including supplementary files and scripts) are available from http://
sysbio.sysu.edu.cn/software/MECAT.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

N/A
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