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Background

In order to decipher the genetic basis of human disease, a comprehensive knowledge of
all genetic variation between human genomes is needed. Until recently, the emphasis has
been on single-nucleotide polymorphisms, as these variants are easier to trace with cur-
rent sequencing technologies and algorithms [1, 2]. Over the past 20 years, we gained a
better view on the prevalence of structural variation (SV), which changed our perspec-
tive on the impact it has on genomic disorders. We now know that structural variation
contributes more to inter-individual genetic variation at the nucleotide level than single
nucleotide polymorphisms (SNPs) and short indels together [3, 4]. Structural variation
covers insertions, deletions, inversions, duplications and translocations that are at least
50 bp in size. The limited length of Next-Generation Sequencing (NGS) reads (< 300
bp) hampers the detection of SVs, especially for insertions [3, 5]. These technical limita-
tions can be partially overcome by the third-generation sequencing, which is capable of
producing far longer read lengths [6, 7]. The race for dominance on the third-generation
sequencing market has significantly reduced the costs per Mb and increased the through-
put and accuracy, which makes these technologies (Pacific Biosciences (PacBio) [8] and
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Oxford Nanopore Technologies (ONT) [9, 10]) currently the best options for structural
variance detection [11].

The introduction of long sequencing reads required a revolution in new computa-
tional tools for sequencing analysis. Even though several algorithms for SV detection were
developed over the past decade, there is a large discrepancy between their outputs [3].
Assessing the performance of SV detection tools is not straightforward, as there is no
gold standard method to accurately identify structural variation in the human genome.
To overcome this shortcoming, the Genome in a Bottle (GIAB) Consortium recently
published a sequence-resolved benchmark set for identification of SVs, though it only
includes deletions and insertions not located in segmental duplications [12]. For as long
as there is no completely resolved benchmark available, it is crucial to simulate a human
genome with a set of structural variations that resembles reality as close as possible. There
are a wide range of structural variation and long sequencing reads simulators available,
yet without a thorough benchmark, it is impossible to know which tools are best suited
to design the model you want to simulate. Therefore we compared several structural
variance and long-read simulators for their system requirements and available features.
Furthermore, we introduce Sim-it, a new SV and long-read simulator that we designed
for the assessment of SV detection with long-read technologies.

The most extensive structural variance detection study to date identified around 25,000
SVs for each individual by combining a wide range of sequencing platforms [3]. The large
amount of sequencing data used for this study makes it too costly to reproduce it on a
larger scale, but it can be used to estimate the number of SVs in a human genome. We
used the results of this study to produce a realistic model for the evaluation of the available
SV detection algorithms and to develop a new script that can improve SV detection by
combining the results of existing tools.

Result

Structural variation simulation benchmark

We compared the features and computational resources of five structural variation sim-
ulators, as shown in Table 1 and described in the “Methods” section “Benchmark of
structural variation simulators” Although all simulators can simulate the most common
types of structural variation (insertions, deletions, duplications, inversions, and translo-
cations), more complex SV events need to be included in order to reproduce a realistic
SV detection model. For Sim-it, we also included complex substitutions and inverted
duplications, both common types of variation in germline and somatic genomes [5, 13—
15]. A complex substitution is defined as a region which been deleted and replaced with
another region of the genome, while an inverted duplication is a tandem duplication of
an inverted segment. Additionally, it is possible to combine random generated SV events
with a defined list of SVs at base pair resolution. Random generated SVs will be dis-
tributed realistically across the genome with higher prevalence around the telomeres. As
output, Sim-it produces a sequence file in FASTA format and optionally long sequencing
reads (PacBio or ONT). Additional files to draw gnuplot [16] figures of the length dis-
tributions from the simulated SVs are provided (Figs. S4-6). Although none of the other
tools has a proprietary method to simulate long reads, Varsim can generate long reads
through PBSIM or LongISLND. Currently, Sim-it does not support short read or phy-
logenetic clonal structure simulation. As for computational resources, Sim-it performed
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Table 1 Available features and system requirements of structural variation simulators

Sim-it SVEngine RSVSim  Varsim VISOR
INPUT
INS, DEL, INV, DUP and TRA v v v v v
Inverted duplications v v v v
Complex substitutions v v v
Foreign sequence insertion v v v v
Random generated SVs v v v v
Realistic distribution of random SVs v v
Breakpoint at base pair resolution v 4 v v v
OUTPUT
Separate haplotypes v v v v
Short sequencing reads v v v
Long sequencing reads v v v
Graphical output v v
Phylogenetic clonal structure v v
COMPUTATIONAL RESOURCES

Wall time 5m30s 12m04s 938m I9m27s 3m02s
Virtual Memory 1GB 243GB 11.9GB 8 GB 1.7 GB

*SCNVsim and SURVIVOR was excluded from the benchmark

best on peak memory consumption and runtime. With 1 GB as peak memory consump-
tion and 5 min 30 s as runtime (single core) to simulate 24,600 SV events, Sim-it can be
implemented for any set of SVs on a small desktop or laptop. SVEngine and Varsim also
have relatively low runtimes, though a peak memory consumption of respectively 24.3
GB and 8 GB limits it’s use on machines with limited computational resources. SCNVsim
and SURVIVOR were excluded as they do not accept a set list of SVs as input and have
an upper limit of SVs (600 for SCNVsim, less than 24,000 for SURVIVOR) for random
simulation.

Long-read simulation benchmark

We assessed the quality of the simulated long reads by comparing their error profiles
to those of real PacBio and ONT sequencing reads. Additionally, we compared the fea-
tures and system requirements for each tool, as described in the “Methods” section
“Benchmark of the long-read simulators”

Several systems of ONT and PacBio technologies have been released in the last decade,
each with different specifications for the sequencing reads. This complicates an accu-
rate simulation as a specific error profile is needed for each released system. From the 9
tested simulators, only Sim-it, Badread, SURVIVOR and LongISLND support simulations
for both ONT and PacBio. Sim-it provides error profiles for ONT, PacBio RS II, PacBio
Sequel 11, and Pacbio Sequel HiFi systems, while other simulators are limited to one or
two error profiles. This shortcoming can be overcome by training a new model for a sys-
tem, a feature supported by all simulators apart from PBSIM and SimLoRD. This is more
laborious and a real dataset along with an accurate reference sequence is required to train
a new model. Not all updates require a completely new error profile, therefore we provide
the option to adjust the overall accuracy and read length independently from the error
profile. Sequencing depths can fluctuate strongly in real datasets, Sim-it can imitate this
with a sequencing depth profile file. Such a file can be created with Samtools [17] from an
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alignment file. As for computational resources, PBSIM performed the best with just 5 min
and 0.25 GB of RAM to simulate 15x coverage for chromosome 1 of GRCh38. Besides for
DeepSimulator, Badread and NanoSim, computational resources stayed within a reason-
able range. Sim-it needed 35 min for chromosome 1, yet this does not represent the real
speed of Sim-it. From version 1.3 on, Sim-it uses multiple threads to simulate each chro-
mosome and haplotype in parallel. A complete overview of the features for each long read
simulator can be found in Additional file 2: Table S1.

Available features and computational resources determine the suitability and user-
friendliness of the simulators, but not the accuracy of the simulation. Therefore, we
compared the context-specific error patterns of the simulated reads to real long sequenc-
ing datasets. Figure 1A shows the context-specific errors derived from real data from
Nanopore PromethION and PacBio Sequel II sequencing reads, as well from their
respective simulations by Sim-it. These context-specific error heatmaps were gener-
ated for each of the 9 simulators and can be found in Additional file 1: Figs. S1-3.
NanoSim generated random errors in stead of a context-specific error pattern, while
SURVIVOR, PBSIM and SimLoRD have simplified patterns. For Sim-it, the length
of deletions and insertions closely match the real data (Fig. 1C, D). LongISLND has
proportionally too many single nucleotide deletions, while the asymmetry for Deep-
Simulator is caused by a low absolute number of deletions, which is not adjustable.
Besides the heatmaps, three more tables can be found in Additional file 1. Two
tables (Additional file 1: Tables S2 and S3) with general statistics of the simulated
reads and a table with the Euclidean distances for the context-specific errors and for
the length distributions of deletion and insertion errors (Additional file 1: Table S3).
The Euclidean values confirm the heatmaps and Fig. 1C, D, with LongISLND and
Sim-it as the most accurate simulations. LongISLND has the most accurate context-
specific errors, while Sim-it has the most accurate length distributions of deletion and

insertion errors.

Structural variance detection using simulated long reads

We assessed the performance of 7 long-read SV detection algorithms through a realistic
model of 24,600 SV events, as described in the Methods section “SV detection on simu-
lated reads” Additionally, we made a comparison between PacBio and ONT technology
and evaluated the impact of the read length and sequencing depth. For each simulated
dataset, a separate score for each type of SV and for the four essential parameters that
define SVs; namely position, length, type and genotype were calculated.

We performed a complete analysis on each of the 7 SV callers for a Nanopore and a
PacBio Sequel II long reads and a HiFi reads dataset with a sequencing depth of 20x
(Table 2). For each dataset, Picky had more than 19,000 false positives and false negatives,
with an outlier of 46,502 false positives for the PacBio HiFi dataset. We therefore excluded
Picky for any further analysis or graphical output. All the statistics of Picky for all three
20x coverage datasets can be examined in Additional file 2.

For a sequencing depth of 20x, cuteSV achieved the best overall performance for the
more erroneous reads of Nanopore and PacBio CLR, while SVIM performs best for
PacBio HiFi. cuteSV produced the lowest number of false positives independent from
sequencing platform, median read length or coverage depth (Table 2 and Fig. 2). Although
pbsv generally has a lower recall, it calls the position and length of the SVs more accurately
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than any other tool, independent from the platform or coverage depth. Subsequently, this
high accurateness results in a significant higher number of perfect matches compared to
other tools. Perfect matches are SVs called with the correct type, genotype, exact length
and position. For PacBio CLR and PacBio HiFi reads, pbsv manages to call respectively
46% and 58.2% of the detected SVs perfectly, which is quite impressive compared to the
other tools. Only SVIM achieved a similar percentage for PacBio HiFi reads (56.3%), how-
ever not for PacBio CLR reads (7.6%). The highest recall is achieved by NanoSV and
to a certain extend NanoVar (only for PacBio HiFi), however this is at the expense of a
disproportional number of false positives.

The 24,600 SVs can be classified by 5 different types, namely deletions, insertions, dupli-
cations, inversions and complex substitutions. We calculated the recall and precision
metrics for each type of SV; Table 3 shows the results for the Nanopore 20x dataset, data
metrics for the PacBio 20x and PacBio HiFi 20x datasets reveal similar patterns and can
be examined in Additional file 2. NanoSV only classifies insertions, other SVs are indi-
cated as breakend (BND). None of the SV callers classify complex substitutions in their
output, which explains the missing precision values for this type. These complex substi-
tutions seem to be the most problematic, as their recall values are very low for each of the
tools. Recall and precision values of inversions are also far below the average for each of
the tools. The low precision value for duplications detected by NanoVar can be explained
by the fact that a significant fraction of the insertions is typed as a duplication.
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Table 2 Benchmark statistics on three simulated datasets of 24,600 SVs for 6 existing SV callers and
combiSV (combiSV (6): all 6 tools combined)

I Sniffles cuteSV pbsv NanoVar NanoSV combiSV (6) | SURVIVOR (6)
Recall 81.3% 816 1 8
Precision 92.6%
@ |[F-score 8 “ 86.1% 86.8%
g. Perfect matches 11.4%
O |Position score 80.8%
% Length score 87.7% 87.7%
Z |Type score
Genotype score
Total score 5 67.0% 64.7%
Recall 78.8% 77.7% 1.7% ~ 817% | 813% 78.8%
Precision 95.1% 93.3%
F-score 87.2% 86.9% 86.5% 87.1% 87.3%
i% Perfect matches | 12.6%
© |Position score 85.0%  86.7% 81.2% 82.0%
E Length score
Type score
Genotype score
Total score 63.1% 66.3% 64.5% 65.7% 66.5%
Recall | 73.7% | 809% | 77.3% 77.5% 75.2%
. |Precision | 95.5% < ]
W [F-score 84.4% 85.3% 85.8%
I [Perfect matches 25.2% 28.9%
g Position score
© |Length score
E Type score
Genotype score
Total score
Recall i | 93.2% 93.5%
T |Precision
8 |F-score
2 |Perfect matches
S [Position score
— |Length score
om
< |Type score
©® |Genotype score 82.3% 86.9%
Total score 4 59.8%
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Fig. 2 Structural variance detection stats for a series of Nanopore and PacBio HiFi datasets with increasing
sequencing depths
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Table 3 Precision and recall statistics for each type of SV from the Nanopore 20x dataset. (combiSV

(6): all 6 tools combined)

Sniffles

Deletions

Insertions
Duplications
Inversions

Complex substitutions
Deletions

Insertions
Duplications
Inversions

Complex substitutions

88.8%
67.0%
54.0%

Precision

Recall

cuteSV

NanoVar
88.5%
81.2%

pbsv

87.2%
51.5%
77.2%

73.7%
63.1%

84.1%
83.1%
50.6%

53.5% 63.5%

NanoSV

84.8%

65.9%

SVIM | combiSV (6)] SURVIVOR (6)

89.1%
72.2%

83.8%
65.4%
77.8%

89.2%
76.3%
66.1%

o 871% | 856% |
| 606% | 66.5% |

50.0%

To investigate the influence of increased sequencing coverage, we simulated 4 different
datasets with sequencing depths of 10x, 20x, 30x, and 50x for both Nanopore and PacBio
HiFi (Fig. 2). The general trends for increased sequencing depth are an increased recall

and decreased precision, although depending on the tool, they can be disproportional to

each other. NanoVar was designed to work on low sequencing depths and therefore does

not display much gain in recall, yet a significant reduction in precision. Sniffles benefits

the most from additional coverage with increasing recall together with almost no loss of

precision. pbsv has a stable performance across all coverages, except for Nanopore 50x,

which exhibits a steep decrease of precision. The big drop in precision for NanoSV and

SVIM at 20x and 50x coverage of Nanopore are caused by the additional filtering step we

implemented for the “minimal read support” (3 for 10x and 20x, 5 for 30x and 50x), which

is necessary to keep a good balance between recall and precision. This pattern is to some

degree visible for all tools, with an exception to cuteSV, which has stable precision values

across all coverages.

Besides sequencing depth, it is often believed that increasing sequencing lengths can

improve assemblies and variance detection. We compared the SV detection metrics for
five datasets of Nanopore with median read lengths of 15, 25, 40, 75, and 100 kbp. We
observed an increase in recall with increasing read lengths for all tools except NanoVar,

with the most pronounced improvement from median lengths of 15k to 25k. pbsv shows
a modest rise in recall of 2% between 15k and 100k lengths, while Sniffles, cuteSV, SVIM,
NanoSV and combiSV show an increase between 6 and 8%. Both pbsv and NanoVar show

a significant drop in precision for read lengths of 75 and 100 kbp. As pbsv is specifically

designed for shorter PacBio reads, it could be an explanation for this drop in precision.

NanoVar is the only tool that has no benefit from longer read lengths, as we observed a
drop in both recall and precision for median read lengths of 75 and 100 kbp (Fig. 3). All

metrics of this comparison can be found in Additional file 2.
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Structural variance detection using real datasets

We based our simulated datasets on a SV call set of NA19240 (nstd152), which was
obtained through an elaborated SV study that combined a wide range of sequencing data
[3]. To compare our simulation to the original genome, we performed the same bench-
mark on a public available PacBio CLR dataset of that study. Recall and precision values
of the real dataset were significantly lower, with an average of respectively 65% and 50%.
An even more striking difference were the recall percentages of around 60% for complex
substitutions, while these values ranged between 1 and 20% for the simulated datasets,
independent from sequencing platform or sequencing depth. While the overall lower
recall and precision values were to be expected due to inaccuracies of the real SV call
set, we found the large rise in recall for complex substitutions questionable. We therefore
examined several alignments of SVs that were typed as complex substitutions. We found
that most of these complex substitutions are in fact insertions or deletions, which would
explain the high recall values. Most of the complex substitutions in nstd152 were deter-
mined by merging of experiments (optical mapping, sequence alignment and de novo
assembly) and not associated to just one method. It is possible that conflicting findings
between methods were thought to be caused by complex substitutions as they consist of
both a deletion and an insertion. We added some concrete examples with screenshots
of alignments and BLAST results of individual reads in Additional file 1: Figs. S7-S38 as
evidence of these findings.

The large discrepancy between our simulated dataset and the real dataset are an indi-
cation that the SV call set of NA19240 (nstd152) has not been called accurately. The fact
that the real NA19240 dataset has much lower precision and recall values than the real
GIAB SV call set makes it unlikely that the discrepancy between the real and simulated
SV call sets of NA19240 is caused by an inaccurate simulation. As additional validation of
our simulation accuracy, we also simulated the GIAB SV callset and called SVs with Snif-
fles, SVIM and cuteSV. Both the recall and precision values of the simulated and real data
were within a 2-5% range from each other.

Improved SV calling with combiSV

This benchmark revealed the strengths and weaknesses of each SV calling tool for long
read sequencing. With this performance data we were able to develop a tool (combiSV)
that can combine the outputs of cuteSV, pbsv, Sniffles, NanoVar, NanoSV, and SVIM into a
superior SV call set, with Sniffles, pbsv or cuteSV as mandatory input (it can run without,
but not recommended). The VCF outputs of each tool serve as input and the minimum
count of supported reads for the variance allele has to be given. The complete wall time
is under 1 minute and less than 1 GB of virtual memory is required. By combining the
strengths of each of the 6 SV callers, we were able to eliminate distinct weaknesses and
improve overall performance (Table 2). The most significant improvements were the ratio
of total matches versus false positives and the accurate definement of the SV parameters.
The added value of combiSV can also be seen by the sequence depth analysis (Fig. 2),
where combiSV has consistently the best overall performance and does not show any
significant drops in recall or precision for any of the sequencing depths. The improved
performance of combiSV is less pronounced by the precision and recall values of the indi-
vidual SV types, which can be explained by the fact that the performance gain was mostly
limited for deletions and insertions. Most importantly, combiSV also showed significant
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improvement for the real GIAB dataset, as it combines the highest recall and precision
from all tools, together with the accuracy from pbsv. This high recall is also achieved
without NanoSV, as combiSV(3) only combines pbsv, sniffles and cuteSV. The combina-
tion of all 6 callers reduced the recall and precision slightly, which is probably caused by
the high number of false positives of NanoSV and NanoVar. Therefore, it is not necessary
to include the output of all 6 SV callers to run combiSV, although it is advised to add two
additional callers besides cuteSV, pbsv or Sniffles. Despite the fact that combiSV takes
less than one minute to run, total runtime will increase because multiple SV callers are
being used. To have an idea how this will affect the total runtime, we performed a system
requirements benchmark for each SV caller (Additional file 1: Table S5).

Currently, there are no similar tools as combiSV available for long sequencing reads.
Therefore, we limited our comparison of combiSV to SURVIVOR, a tool that combines
VCEF files based on overlap. When combining the output of the 6 SV callers, combiSV
produced a higher F-score and Total score for each of the 4 datasets in Table 2. Combin-
ing 6 tools requires additional effort and computational time, we therefore produced an
additional benchmark where we tested 9 combinations of 3 SV callers for combiSV and
SURVIVOR on the simulated Nanopore (20x) and the GIAB datasets (Table 4 and Addi-
tional file 1: Table S6). For the simulated dataset, combiSV achieved a higher F-score and
Total score for each combination. For the GIAB dataset, combiSV had a higher Total score
for all combinations and a higher F-score for 7 out of 8 combinations. The only combina-
tion with a higher F-score for SURVIVOR was SVIM, NanoSV and NanoVar. With a recall
of 85%, combiSV performs significantly less on this combination, as other combinations
have recalls above 93.5%. This is because combiSV is designed to have at least cuteSV,
Sniffles or pbsv in the combination, while SVIM, NanoSV, and NanoVar can be added as
support.

Discussion

We developed a realistic simulated model to benchmark existing structural variation
detection tools for long-read sequencing. This was accomplished with Sim-it, a newly
developed tool for the simulation of structural variation and long sequencing reads.
Although there are several tools available that can simulate structural variation or long
sequencing reads, a benchmark study to assess the accuracy of these simulators was

Table 4 Comparison between combiSV and SURVIVOR for 9 combinations of three SV callers on a
simulated Nanopore dataset of 20x and the GIAB reference dataset (Nanopore). The highest scores
between combiSV and SURVIVOR are indicated in gray

cuteSV cuteSV cuteSV cuteSV cuteSV cuteSV cuteSV cuteSV sViM
Sniffles Sniffles Sniffles pbsv pbsv pbsv pbsv NanoSV NanoSV
NanoSV NanoVar SVIM NanoSV NanoVar SVIM Shniffles svim NanoVar
> [Recall 81.3% 80.7% 80.6% 79.7% 79.4% 79.8% 80.4% 79.3% 80.1%
c % Precision 98.0% 98.6% 98.4% 98.7% 98.8% 98.7% 98.5% 98.7% 97.5%
o E |F-score 88.9% 88.8% 88.6% 88.2% 88.0% 88.2% 88.6% 87.9% 87.9%
k] © |Total score 72.6% 72.0% 72.0% 71.8% 71.7% 71.9% 72.5% 69.9% 69.6%
E % |Recall 79.3% 75.2% 77.8% 77.9% 75.7% 77.9% 72.0% 78.5% 78.7%
% | 2 |Precision 97.9% 98.4% 97.7% 98.4% 98.8% 97.8% 98.4% 97.5% 97.7%
& |F-score 87.6% 85.2% 86.6% 87.0% 85.7% 86.7% 83.2% 87.0% 87.1%
@ |Total score 63.3% 63.8% 65.3% 62.9% 65.0% 65.8% 63.7% 54.1% 54.8%
> [Recall 93.5% 93.6% 93.6% 94.4% 95.1% 95.4% 95.4% 93.8% 85.0%
% Precision 93.9% 93.6% 93.3% 92.8% 92.1% 91.6% 92.7% 90.1% 91.7%
E |F-score 93.7% 93.6% 93.5% 93.6% 93.6% 93.4% 94.0% 91.9% 88.2%
Et: © |Total score 70.3% 69.0% 69.7% 73.6% 72.8% 72.4% 73.7% 65.6% 61.8%
o % |Recall 80.9% 91.6% 93.8% 81.3% 91.0% 94.2% 93.5% 93.8% 90.8%
2 [Precision 94.1% 92.6% 77.4% 95.3% 92.9% 77.8% 93.2% 78.1% 90.4%
& |F-score 87.0% 92.1% 84.8% 87.8% 92.0% 85.2% 93.3% 85.2% 90.6%
® |Total score 58.6% 61.7% 42.3% 61.1% 63.9% 45.7% 66.1% 45.5% 60.0%
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needed. Besides Sim-it, the combination of Varsim and LongISLND (despite the aber-
ration for the length of deletions) could also have been used for this benchmark study.
We simulated in total 5 PacBio and 8 Nanopore whole genome sequencing datasets
of GRCh38 with coverages ranging between 10x and 50x and lengths between 15 and
100 kbp. With these simulations, we assessed the performance of 7 SV callers and the
influence of increasing sequencing depths and read lengths.

For most datasets, cuteSV, or SVIM produced the best overall performance with a good
balance between recall and precision. cuteSV has the highest precision across all datasets,
yet performs significantly less for PacBio HiFi datasets with a coverage below 30x. pbsv
defines the SVs the most accurate across all datasets and since it is designed for PacBio,
it performs the best on this type of data. NanoSV and NanoVar have high recall num-
bers, however at the cost of a disproportional high false positive rate (to a lesser extent
for PacBio HiFi data). We found similar patterns for the high-fidelity SV call set of GIAB,
although with some distinct differences. The real GIAB dataset had for each of the tools
a higher recall and a lower precision compared to the simulations. The higher recall can
be explained by the fact that the GIAB call set only contains insertions and deletions in
non-complex regions, which are easier to call than other types of SVs or SVs in com-
plex regions. Similar lower precision values from a simulation of the SV call set of GIAB
suggests that these lower values are sample-specific and not caused by inaccurate simula-
tions. The high precision values for the simulations of the 24,600 SVs could be misleading,
as the SV callset of the Chaisson et al. study possibly contains a significant number of false
positives that we simulated as true SVs.

Recall and precision values are the preferred metrics to measure SV detection accuracy.
Called SVs are scored as 0 or 1, based on a reference SV set. However, there is no con-
sensus about how accurate the position, length or SV type has to be called to be matched
with the reference set. Therefore, we chose a tolerant matching algorithm and included
a total score that integrates the accuracy of the call, which is not integrated in the F-
score. The downside of our total score is that some SV callers that do not call SV types
or genotypes are too heavily punished. In addition, we added separate accuracy scores for
position, length, type and genotype.

It is often assumed that higher sequencing depths and longer read lengths will improve
assembly and variance calling outcomes. Yet in our benchmark, increasing sequencing
depths does not guarantee improved structural variation calling. Although there was still
a modest rise in recall numbers for sequencing depths above 30x, we did observe a dis-
proportional rise in false positives above 30x. This rise in false positives was not observed
for increasing sequencing lengths, while we observed an increase in recall for longer read
lengths across all methods.

Finally, we looked at precision and recall rates for each type of SV. Each tool showed
the best performance for deletions and insertions, which are the majority of SVs in a
human genome. More problematic SVs are inversions and complex substitutions, where-
fore recall rates are respectively between 50-68% and 5-25%. As complex substitutions
are not defined by any of the tools, it seems likely that these algorithms are not designed
to detect this type of SV. New SV callers or updates of existing ones could make signif-
icant improvements in this direction. Although the SV study we used as blueprint [3]
detected around 3000 complex substitutions per individual, we discovered that most of

these complex substitutions were insertions or deletions. The actual prevalence of this
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type of structural variation is therefore possibly not accurate and requires further studies
in order to map the complete structural variation profile in the human genome.

This study shows that a simulated model can be beneficial to gain a better under-
standing in the performance of structural variation detection tools. The development
of combiSV was solely based on simulated datasets, but the recall and precision values
from combiSV for the GIAB dataset shows that the statistics from the simulated data is
transferable to real datasets. It is crucial that the simulations are as accurate as possible.
Currently, Sim-it does not simulate small indels and SNPs, although they can influence
the detection of small SVs and will therefore be included in the next update.

Conclusions

This extensive benchmark unveiled the strengths and weaknesses of each SV detection
algorithm and provided the blueprint for the integration of multiple algorithms in a new
SV detection pipeline, namely combiSV. This Perl script can combine the VCF outputs
from cuteSV, Sniffles, pbsv, NanoVar, NanoSV, and SVIM into a superior call set that has
the high precision of cuteSV, the accuracy of pbsv and the high recall of SVIM. combiSV
also achieves a higher recall, precision and accuracy compared to SURVIVOR, an existing
algorithm to generate a consensus VCFE. The added value of combiSV on simulated data
was supported by the real dataset of GIAB, where the gains were even more outspoken,
which demonstrates the strengths of an accurate simulated model for the development of
new bioinformatic tools.

Methods

Sim-it

We developed a new structural variation and long-read sequencing simulator, called Sim-
it. The structural variation module outputs fasta files of each haplotype, plus an additional
one that combines all SVs in one sequence. A set list of SVs can be combined with
additional random generated SVs as input. The long-read sequencing module outputs
sequencing reads based on a given error profile and 4 metrics (coverage, median length,
length range and accuracy). We provide error profiles for Nanopore, PacBio RS II, Sequel
II, and Sequel HiFi reads. Additional error profiles can be generated with a custom script.
Both simulation modules (SV and long reads) can be used separately or simultaneously,
starting from a sequence file as input. We also provide plots with the length distribu-
tions for the simulated sequencing reads and structural variations (insertions, deletions
and inversions). Sim-it was written in Perl and does not require any further dependen-
cies. Sim-it is open source and can be downloaded at https://github.com/ndierckx/Sim-
it, where a more complete manual can be found.

Benchmark of structural variation simulators

We compared Sim-it (v1.2) with RSVSim (v1.24.0) [18], SVEngine (v1.0.0) [19], VISOR
(v1.1) [20], and VarSim (v0.8.4) [15] for computing resource consumption and available
features. Runtime performance was measured using the Unix time command and Snake-
make (v5.7.0) [21] benchmark function on the custom VCF of 24,600 SVs. We did not
evaluate the performance of SCNVSim [10] and SURVIVOR [22] because they do not
accept a custom VCEF file. All scripts were executed on a Xeon E7-4820 with 512 GB of
memory.


https://github.com/ndierckx/Sim-it
https://github.com/ndierckx/Sim-it
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Benchmark of the long-read simulators

We compared Sim-it (v1.0) with the long-read simulators PBSIM (v1.0.4) [23], Badread
(v0.1.5) [24], PaSS [25], LongISLND (v0.9.5) [26], DeepSimulator (v1.5) [27], Simlord
(v1.0.3) [28], SURVIVOR (v1.0.7) [22], and NanoSim (v2.6.0) [29] for computing resource
consumption and error frequency within context-specific patterns for mismatches and
indels using real data of Nanopore and PacBio sequencing. Runtime performance was
measured using the Unix time command and Snakemake (v5.7.0) benchmark function on
the 15x sequencing coverage simulation with chromosome 1 of GRCh38. Context-specific
error patterns were analyzed by a custom perl script with alignment 30x simulated read
to 60 Kbp sequence. All scripts were executed on a Xeon E7-4820 with 512GB of memory.
More details on the error profiles used for each simulation can be found in Additional
file 1: Section 2.

Train customized error profiles for Sim-it

Error profiles were trained by a customized script, which aligns each read individually to
the assembled reference sequence with BLAST [30]. For each kmer of 3 bp, the error rates
of substitutions, insertions and deletions of the middle nucleotide were determined, along
with the length patterns of deletions and insertions. The E. coli K12 substrain MG1655
dataset of PacBio Sequel II and PacBio RS II was downloaded from the github website of
Pacific Biosciences. Using the above two datasets, we trained the error profile of PacBio
Sequel II and PacBio RS II. We also downloaded the GIAB HG002 dataset of PacBio
Sequel II HiFi reads powered by CCS. To reduce the computational time, we trained the
error profile of PacBio Sequel II HiFi reads based on chromosome 1 of GRCh38. The
Nanopore error profile is based on sequencing reads for chromosome 1 of GRCh38 from
the publicly available GIAB HG002 dataset GM24385.

SV detection on simulated reads

We used the simulated data from Sim-it to validate 6 structural variant callers, namely
Sniffles (v1.0.11) [1], SVIM (v1.3.1) [31], NanoSV (v1.2.4) [32], Picky (v0.2.a) [33],
NanoVar (v1.3.8) [34], cuteSV (v1.0.10) [35], and pbsv (v2.3.0). A list of 24,600 SVs, derived
from sample NA19240 of dbVAR nstd152 [3], was used to simulate Nanopore, PacBio
CLR reads and PacBio HiFi reads for GRCh38 at a sequencing depth of 20x. This set of
SVs consists out of 10,469 insertions, 10,031 deletions, 857 duplications, 170 inversions
and 3073 complex substitutions. We also simulated 20x normal read using GRCh38 with
not structural variants at all. Besides for pbsv, we aligned the simulated reads to GRCh38
using Minimap2 (v2.17-r941) [36]. The alignment for pbsv was performed using pbmm?2
(v1.3.0) with default parameters. The exact parameters that were used for the alignments
and SV callers can be found in Additional file 1: Section 1. Besides the six SV callers, we
also included SURVIVOR to the benchmark. This tool combines VCF files by merging
overlapping SVs.

Furthermore, we simulated additional Nanopore and PacBio HiFi reads for GRCh38 at
sequencing depths of 10x, 30x and 50x to study the influence of increasing sequencing
depths for SV calling. Each of the Nanopore simulations had a median read length of 25
kbp, we also included four additional simulations of 15 kbp, 40 kbp, 75 kbp, and 100 kbp
with a sequencing depth of 20x. PacBio long reads have a median length of 25,000 bp and
the PacBio HiFi reads a median length of 15,000 bp. An additional filtering step was added
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for each VCF output; we only retained variances that obtained a PASS for the FILTER
value, that have a length of 50 bp or more and wherefore at least 3 (for sequencing depths
10x and 20x) or 5 (for sequencing depths 30x and 50x) reads support the variance. This
additional filtering step significantly improved the output for each tool compared to the
raw VCF output.

Benchmark metrics were calculated by comparing the VCF output of each SV caller
against the simulated reference set of 24,600 SVs. For each detected SV, we looked for
possible matches in the reference set within a 1600-bp range of the detected position.
When the length of the SV was determined, we tolerated an error margin of 35% for SVs
longer than 300 bp and no error margin for shorter SVs. If these two conditions were met,
a detected SV was matched to the SV of the reference set, independent from the type
or genotype that was called. Based on these paired SVs, recall, precision and the F-score
(2*((precision*recall)/(precision+recall))) were calculated. As there are multiple metrics
that define the performance of an SV detection algorithm, we adopted an overall score
that combines each of the metrics. For each detected SV, a maximal score of 1 was pos-
sible: 0.4 for the correct position, 0.2 for the correct length, 0.2 for the correct type of
SV, and 0.2 for the correct genotype. The scores for length and position proportionally
decreased with difference compared to the reference set. Finally, the number of false pos-
itives were subtracted from the total score and eventually expressed as a percentage of the
maximum possible score (Table 2).

SV detection on real datasets

The Genome in a Bottle (GIAB) Consortium recently developed a high-quality SV call
set for the son (HG002/NA24385) of a broadly consented and available Ashkenazi Jewish
trio from the Personal Genome Project. We performed a benchmark on the latest most
conserved BED file (HG002_SVs_Tierl_v0.6.2.bed) for this sample, which contains 5260
insertions and 4138 deletions. The public available ultralong Nanopore reads (GM24385)
with an average sequencing depth of 45x were used for this benchmark. This GIAB
dataset was also simulated to estimate the impact of simulated versus real reads on recall
and precision values. Furthermore, we compared SV detection metrics of a public avail-
able PacBio dataset of NA19240 [3] with an average sequencing depth of 37x against the
results of our simulated datasets.

combiSV

With the results of the SV detection benchmark, we developed a script to combine the
results of cuteSV, pbsv, Sniffles, NanoVar, NanoSV and SVIM. The output VCF files of
each of the 6 tools serve as input, from which the files of cuteSV or Sniffles are obligatory
to run combiSV. For each SV detection tool, we examined the connections between the
false positive rates and the accuracy of the stats (position, SV type and genotype) to each
type of SV and genotype. When multiple callers detect the same SV, for each stat one
SV caller will be prioritized based on the statistical analysis of the simulated benchmark.
pbsv wil for example be prioritized for position and length stats, while cuteSV for the
genotype. To further improve recall percentages, specific types of SVs that exhibited low
false positive rates in the benchmark will be included in the final SV set, e.g., homozygous
SVs from SVIM or heterozygous insertions and deletions from Sniffles. The number of
callers needed to confirm an SV is set for 2 when 2 to 5 callers are combined and 3 when
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6 callers are combined. This number can be adjusted manually, with also an additional
option to exclude the calls that were only supported by one caller. The minimal coverage
of the alternative allele is set to 3 as default value, but can be adjusted for datasets with
high sequencing depths. The script was written in Perl and does not require any further
dependencies. combiSV is open source and can be downloaded at https://github.com/
ndierckx/combiSV.
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