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Abstract
Protein kinase phosphorylation is central to the regulation and control of protein and cellular function. Over the
past decade, the development of many high-throughput approaches has revolutionized the understanding of protein
phosphorylation and allowed rapid and unbiased surveys of phosphoproteins and phosphorylation events. In addition
to this technological advancement, there have also been computational improvements; recent studies on network
models of protein phosphorylation have provided many insights into the cellular processes and pathways regulated
by phosphorylation. This article gives an overview of experimental and computational techniques for identifying
and analyzing protein phosphorylation on a systems level.
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INTRODUCTION
Since the discovery of phosphoserine by Levene and

Lipmann in 1932, protein phosphorylation has been

shown to be one of the most central regulatory

and signaling processes in the cell. Affecting up to

30% of the proteome and essential in the regulation

of cellular functions, phosphorylation networks are

also essential backbones of the communication

system within cells [1]. Phosphorylation can regu-

late a variety of important protein functions, includ-

ing subcellular localization, protein degradation

and stabilization, as well as biochemical activities

[2–4].

Simply defined, phosphorylation is a reversible

protein posttranslational modification (PTM), cata-

lyzed by the family of proteins called protein kinases.

In eukaryotes, this protein family is highly conserved

and is classified into three major subfamilies on the

basis of the residues they modify (i.e. Ser/Thr, Tyr

and dual specificity kinases). However, in lower

eukaryotes (e.g. the budding yeast) and plants,

there are no bona fide tyrosine kinases [5]. It is gen-

erally believed that Tyr kinases evolved much later

than the Ser/Thr kinases. In most fully sequenced

eukaryotes, protein kinases are well annotated. In

yeast, there are 122 kinases identified [6–8], whereas

in Drosophila there are 251 [9]. In humans, the

kinome consists of 518 protein kinases [10]; in

mice, there are 540 members [11]. As with all pro-

tein family identification, these numbers are not

final; there may be identified kinases that are not

catalytically active, as well as other kinases that do

not share high sequence homology with known

kinases and, thus, are yet to be discovered.
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Traditionally, protein phosphorylation has been

studied by using several biochemical approaches,

including in vivo labeling, phosphopeptide mapping,

protein purification-associated kinase activity and

phosphoamino acid analysis [12]. Although these

approaches laid invaluable foundations for under-

standing protein phosphorylation, they not only are

labor intensive but also focus on small numbers of

individual proteins. With recent technological

advances, protein phosphorylation events can now

be studied on a more global and systematic scale;

large-scale high-throughput approaches have expo-

nentially increased our understanding of the com-

plexity of the phosphorylation networks.

Here, we review the contemporary high-

throughput approaches in protein phosphorylation

research (Table 1). In the first part, we examine iden-

tification of phosphoproteins and phosphorylated

sites in these proteins. In the second part, we focus

on identification of kinase–substrate relationships. In

the last part, we discuss the construction of phos-

phorylation networks and their global analysis.

IDENTIFICATIONOF
PHOSPHOPROTEINSAND
PHOSPHORYLATION SITES
The challenge
Only with recent technological developments,

researchers have started to identify and study

phosphoproteins and phosphorylation sites in a

high-throughput manner. Several obstacles make

the task difficult. (1) There is no simple central uni-

fying sequence homology among the phosphopro-

teins. While smaller subsets of phosphoproteins may

share some sequence homology, these are still not

well annotated and understood. (2) Because protein

phosphorylation is a PTM and can occur on a wide

variety of proteins, there is an extremely large set

of possibly phosphorylated proteins with few unify-

ing characteristics besides phosphorylation. (3)

Biologically, phosphoproteins are often present in

little amounts and often only a small portion of the

same protein is phosphorylated. Thus, high sensitiv-

ity is required for detection. (4) Phosphorylation

events are often transient and dynamic. Although

some proteins fluctuate regularly in their phosphor-

ylation status during the cell cycle, other proteins are

phosphorylated only under specific conditions and in

response to specific stimuli. Thus, comprehensive

understanding would require multiple measurements

of the same relationships under different conditions

and at different times. (5) Phosphoproteins usually

have multiple phosphorylation sites, and additional

research is needed to determine which site is physi-

ologically relevant. (6) A phosphoprotein can be

phosphorylated by multiple kinases, and the physio-

logical and biological results may differ. Therefore,

understanding of phosphorylation is complex

and multifaceted. For the reasons above, the

Table 1: High-throughput approaches in protein phosphorylation research

Technology Information detected Advantages Disadvantages

Gel-based systems Phosphoproteins and
phosphorylation sites

Low cost and large
separation possible;
specific detection

Sensitivity differs depending
on antibody attributes

Mass spectrometry Phosphoproteins and
phosphorylation sites

Large-scale measurement
with many sites identified
in parallel

Detection limited by
enrichment processes;
complexity of spectra
requires extensive
computational effort and
existing database

Random peptide library
screening

Kinase^ substrate
relationships

Allows for higher throughput
detection of relationships

Dependent on the size of
the library, sequences are
often too short

Genetic perturbation Kinase^ substrate
relationships

Biologically important
phenotypic detection

Results may be due to
indirect effects

Protein microarray Kinase^ substrate
relationships

Allows unbiased screening of
large number of
relationships

In vitro protein may not
reflect in vivo protein
function

Computational approaches Phosphoproteins and
phosphorylation sites;
kinase^ substrate
relationships

Fast, low cost, allows
high-order integration

Dependent on existing
information, high
false-positive rate
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understanding of phosphoproteins is non-trivial,

and many researchers have contributed to this

initiative [13, 14]. Here, we focus on the tech-

nologies of the high-throughput approaches in

identifying phosphoproteins and phosphorylation

sites.

Gel-based systems
Two-dimensional gel electrophoresis, or 2-DE, is a

classic proteomics method to separate protein mix-

tures and detect phosphorylation changes. Its general

use allows the separation of proteins in a complex

mixture in various dimensions [15]. With the devel-

opment of phosphospecific stains (e.g. Pro-Q

Diamond dye) [16, 17] and the incorporation of

modified adenosine triphosphate (ATP) analogues,

such as with radio-labeled phosphate or additional

bulky R groups [18–20], the separated phosphopro-

teins can be visualized and detected on the gel. With

use of this approach, a number of phosphoproteins

have been identified in the extracellular signal-

regulated kinase (ERK) pathway [21]. Another

gel-based method of phosphoprotein detection is

immunoblotting, which takes advantage of phos-

phospecific antibodies that have been developed

against different phosphorylated amino acids [22].

For example, anti-phosphotyrosine antibodies have

been generated to detect a wide range of tyrosine-

related phosphoproteins [23, 24]. However, antibo-

dies raised against phospho-Ser/Thr generally have

low affinity and specificity. Alternatively, phos-

phorylated peptides on specific Ser, Thr or Tyr res-

idues have been used to create phosphorylation

site-specific antibodies. Indeed, more than 300 of

such antibodies are currently available [25]. While

this method is powerful, different antibodies

behave differently and often have different detection

ranges and limits. The conclusions must take into

consideration the differing sensitivity, specificity

and behavior of the different antibodies.

Mass spectrometry
Mass spectrometry (MS) enables simultaneous iden-

tification of large numbers of proteins in complex

samples [26]. One of the greatest breakthroughs in

phosphoproteomics is the application of MS to iden-

tify thousands of in vivo phosphorylation sites in a

single study [27]. Even though MS enables unbiased

and large-scale detection of proteins and peptides,

due to the aforementioned obstacles of low

abundance, low ratio and transiency of the modifi-

cations, many adaptations have been made to this

technology for phosphoproteomics.
To circumvent the problem of low abundance,

many strategies have been developed to enrich phos-

phoproteins or phosphopeptides prior to MS analysis

[15, 28–30]. One strategy is to selectively enrich

for phosphoproteins and remove the non-

phosphoproteins via immunoprecipitation with anti-

bodies [31, 32]. Although not all antibodies effective

for immunoblotting can be directly translated to use

with immunoprecipitation, large panels of antibodies

still remain that can be used to enrich the protein

population [31]. Because of the high affinity and

specificity of anti-phosphotyrosine antibodies, they

have been applied to obtain a global picture of

tyrosine-phosphorylated proteins [31, 33–38].

Another enrichment method is immobilized metal

affinity chromatography (IMAC) [39, 40]. Simply

put, it is an electrostatic-based method that takes

advantage of the negative charge of phos-phosphate

groups and the positive charge of metal ions. The

interaction is mediated by using nitriloacetic acid

(NTA), iminodiacetic acid (IDA) and Tris (carbox-

ymethyl) ethylenediamine (TED) linkers. As

expected, since charge is not specific to particular

amino acids, other negatively charged acidic amino

acids, such as glutamic and aspartic acid, also bind

non-specifically to metal ions [3]. Nonetheless,

IMAC has been effective in determining the yeast

phosphoproteome, plasma membrane phosphopro-

teins and cell line phosphoproteins [3, 41, 42].

Other similar approaches include strong cation-

exchange chromatography (SCX) [43, 44] and

enrichment by titanium dioxide and zirconium diox-

ide [45].

Because of the complexity of the MS spectra,

extensive computational analysis is needed before

phosphopeptide identification. The first computa-

tional step requires the implementation of search

algorithms to match the obtained spectrum with

known spectra databases [46]. Many software pack-

ages perform this step including Mascot [47],

SEQUEST [48], OMSSA [49], X! Tandem [50],

GutenTag [51], InsPecT [52] and Spectral

Networks Analysis [53]. Because of the high

false-positive rate of matching the complex MS spec-

tra, a second computational step is to filter out

known false positives, using algorithms such as

DTASelect [54–56] and PhosphoPIC [57]. Finally,

there is a step for further curation and confirmation.
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Specifically, since phosphoproteins often contain

more than one phosphosite, care must be taken to

examine how each site performs differently under

different conditions. Programs such as MSQuant

[58, 59] and Ascore [59, 60] have enabled this cura-

tion and confirmation process.

The most powerful application of MS is its ability

to determine the cell status in terms of phosphoryla-

tion sites on a global scale. Many studies have been

performed on a variety of organisms and in different

physiological conditions; these organisms include

yeast, Drosophila, mouse and human [61–65]. For

example, by using a strategy based on SCX, more

than 2000 phosphopeptides were enriched from 967

proteins in the nuclear fraction of HeLa cell lysate

[44]. This accomplishment illustrates that a large-

scale comparative phosphorylation analysis of differ-

ent cell states using MS could simultaneously profile

hundreds, even thousands, of phosphorylation sites.

Subsequently, the same group conducted a study on

cell cycle-regulated phosphorylation in HeLa cells

and identified more than 14 000 phosphorylation

sites from 3682 proteins [66]. Interestingly, many

sites contain the cyclin-dependent motif, a finding

that suggests most of the sites may be the direct tar-

gets of cyclin-dependent kinase (CDK). In another

study, Yang and coworkers performed phosphopro-

teome profiling of human skin fibroblast cells in

response to low- and high-dose irradiation [67].

They found that irradiation stimulates the signaling

pathways, given that the number of phospho-

peptides increased in both low- and high-dose

irradiation. More importantly, a significant enrich-

ment in the CDK motifs was observed after

low-dose irradiation, whereas the motifs for

3-phosphoinositide-dependent protein kinase-1

(PDK1) and AKT/RSK were enriched in high-dose

irradiation.

In yeast, an integrated phosphoproteomic tech-

nology identified more than 700 phosphopeptides

from key regulator proteins of a prototypical

G-protein-coupled receptor signaling pathway [68].

Among these identified phosphopeptides, 139 were

differentially regulated in response to mating phero-

mone; interestingly, these regulated proteins were

components belonging to the mitogen-activated

protein kinase (MAPK) signaling pathway. This

example, as well as the ones above, demonstrates

the power of the global analysis of phosphorylation

in revealing the signaling pathways involved in dif-

ferent biological processes.

IDENTIFICATIONOF KINASE^
SUBSTRATERELATIONSHIP
The challenge
The traditional approach to identifying upstream

kinase(s) of a substrate of interest has been mainly

based on in vitro assays. Starting with a single pure

recombinant kinase, one can query many of the pos-

sible targets [69–73]. However, due to the focused

nature of this method, it is not suitable for high-

throughput analyses. As reviewed in the previous

section, many phosphoproteins and phosphorylation

sites have been documented, mainly via the MS

approach. However, the connections between sub-

strates/sites and their upstream kinases are still miss-

ing. One possible way to identify upstream kinase(s)

for a phosphorylation site is to compare with known

phosphorylation motifs (see below for computational

approaches). If the phosphorylation motif of one

kinase matches the identified phosphorylation site,

it is likely to be the upstream kinase of the phosphor-

ylation site. However, two main problems hinder

this strategy. First, most kinases currently do not

have a known phosphorylation motif. Second,

many kinases share similar phosphorylation motifs.

For example, many CDKs have the p[S/T]P motif,

while kinases from calmodulin-dependent protein

kinase (CAMK) group often have the Rxxp[S/T]

motif [74]. Therefore, new approaches are needed

to identify the kinase–substrate relationship.

Random peptide library screening
One large-scale method to identify kinase–substrate

relationships is using peptide libraries to query

exhaustively possible peptides of a particular kinase

in order to characterize the preferred peptides for the

kinase in question. The results can then be used to

define specificity of the kinase. For example, by scor-

ing an immobilized peptide library, polo-box

domain (PBD) was identified as a specific binding

domain of the mitotic kinase polo-like kinase 1

(Plk1), and this domain mediates Plk1 localization

to substrates [75]. In a large-scale study, a positional

scanning peptide library was constructed consisting

of 198 distinct peptide mixtures that were used to

profile the sequence preferences for phosphorylation

by eight protein serine/threonine kinases [76].

Following the derivation of preferred peptides of

kinases, one useful application is to predict novel

substrates of a kinase by scanning protein databases

with the preferred peptides. While this method

allows one to start getting a global picture of the
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kinase–substrate relationships, the derived peptide

preferences of kinases are often too degenerative to

pinpoint the full-length protein substrates. This lim-

itation inevitably results in a high rate of false posi-

tives of predicted substrates.

Genetic perturbation
Another method for identifying substrates of a par-

ticular kinase is to introduce genetic perturbation by

either knocking down or knocking out the kinase of

interest in cells. The rationale for this approach is as

follows: if the perturbation of a kinase results in sim-

ilar phenotype as the perturbation of a substrate, it is

likely that the substrate is a target of the kinase. In

systems where gene knockout is straightforward via

homologous recombination, such as the budding

yeast, comparisons can be made between the

wild-type and knockout strains and the affected

phosphoproteins should be hypophosphorylated in

the mutant [77]. However, in higher eukaryotes

where homologous recombination is often not prac-

tical, RNA interference (RNAi) technology offers a

convenient means of depleting specific proteins.

From small-scale experiments, Sachs and cowork-

ers studied a signaling network of 11 proteins that

were perturbed individually and responses of the

system were measured in a large number of replicates

(700–900 times). A Bayesian network was employed

to identify the best network model fitting all pertur-

bation data [78]. In a large-scale study of using

genetic perturbation by RNAi, several hundred

human kinases were targeted by RNAi and around

11% of the kinome was found essential for promot-

ing cell survival [79]. In addition, many new kinase–

substrate pairs were also revealed. While this method

is powerful, there are a few potential drawbacks.

First, there may be incomplete depletion and some

nonspecific effects. Second, it is difficult to distin-

guish the direct and indirect effects of the depletion

of the kinase since the phenotype caused by kinase

depletion reflects a consequence of a number of mis-

regulating pathways. Third, just depleting particular

kinases or substrates may fail to yield a phenotype

due to compensatory pathways.

Protein microarray
Protein microarrays, also known as protein chips, are

miniaturized and parallel assay systems that contain

small amounts of purified proteins in a high-density

format [8, 80]. This approach allows the simultane-

ous determination of a variety of analytes from small

amounts of samples within a single experiment. The

development of protein microarray technology has

revolutionized the determining of the relationship

between enzymes and their substrates. Functional

protein microarrays are typically prepared by immo-

bilizing individually purified proteins onto a micros-

cope slide using a standard contact chip writer or

non-contact microarrayer. A protein microarray

can be viewed as a substrate array when an enzymatic

reaction is performed on it to identify potential

downstream targets [81]. Many types of enzymatic

reactions have been developed for various types of

PTMs, such as phosphorylation [5, 8, 82], ubiquity-

lation [83], acetylation [84] and deoxyribonucleic

acid (DNA) crosslinking [85]. Protein chips offer

many advantages for studying protein phosphoryla-

tion. Thousands of proteins can be rapidly screened

for enzyme–substrate relationships in an unbiased

fashion with very small amounts of reagents and

under a variety of test conditions. In addition, closely

related kinases with known redundant functions can

be readily differentiated at the molecular level on the

basis of their substrate profiles.

Zhu and coworkers first analyzed the substrate

specificity of 119 yeast kinases on 17 different sub-

strates using nanowell protein chips [80]. Tiny wells

with 10ml capacity were created in a silicon elastmer,

polydimethylsiloxane (PDMS), to carry out parallel

kinase reactions. Substrates were first covalently

crosslinked to the bottom of the wells, and individ-

ually purified yeast kinases were added in kinase

buffer in the presence of radio-labeled ATP. After

the reactions, the nanowell chips were washed

extensively, dried and exposed to X-ray film to visu-

alize the phosphorylation signals. By doing so, phos-

phorylation profiles of almost all of the yeast kinases

were obtained. Another example of the same

approach involved identifying potential upstream

kinases of a yeast protein Crz1p [86]. The identified

kinase, Hrr25p, was not only identified but was also

validated with in vitro and in vivo methods.

Later, the same group managed to accomplish the

so-called ‘Phosphorylome Project’ using the yeast

proteome microarrays [5]. The goal was to identify

all the potential protein substrates of each yeast

kinase. In vitro kinase reactions were carried out on

the yeast proteome chips using 87 individually pur-

ified kinase(s) complexes in the presence of
33P-ATP. In all, 4129 phosphorylation events,

involving 1325 different proteins, were identified.

To ensure that the signals resulted from
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phosphorylation events, 5% sodium dodecyl sulfate

(SDS) was used to denature proteins on chips to

remove signals from binding of kinase proteins or
33P-ATP. Those phosphorylation results have been

assembled into a first-generation, global kinase sig-

naling network in yeast. While this experiment is set

up from a kinase perspective, one can also examine

the data from a complementary view. From a sub-

strate perspective, more than a quarter of the sub-

strates could be recognized by three or more kinases,

thus showing the multivalent behavior of some sub-

strates; however, the vast majority of substrates are

recognized by only a few kinases.

The use of protein microarrays has now been

extended to different organisms. Using the first

Arabidopsis protein chip containing 1690 proteins,

48 and 39 potential substrates have been identified

for the Arabidopsis thaliana MAPKs, MPK3 and

MPK6, respectively [87]. Nearly all of the 48 poten-

tial MPK3 substrates were confirmed by other invitro
methods, and one of the identified MPK6 substrates

was also shown to be the MAPK substrate in vivo by

another independent study. Recently, a comprehen-

sive MAPK target network in Arabidopsis was con-

structed using protein microarrays [82]. In total, 570

MPK phosphorylation substrates have been identi-

fied for 10 different MAPKs and some of the

substrates were validated by reconstitution experi-

ments. Because of the high-throughput nature of

these studies with small amounts of protein, this

powerful method will start to revolutionize our

understanding of kinase–substrate relationships on a

global scale.

Computational approaches
Recently, a number of computational approaches

have been proposed to predict kinase–substrate rela-

tionships [88]. Most of these prediction algorithms

rely on phosphorylation motifs; if a kinase has a

known phosphorylation motif, one can scan the pro-

tein sequences and the proteins with matched sites

are predicted to be potential substrates of the kinase

[89]. This method has been shown effective in yeast

to identify and predict protein kinase A (PKA) sub-

strates [90]. While such approaches are powerful and

useful, a drawback is the high rate of false positives

due to the fact that phosphorylation motifs often

degenerate and are not the only determinant for

the specificity for kinase–substrate interaction.

A more sophisticated computational approach

would be to build networks based on diverse

information [91]. In the system named

NetworKIN, phosphorylation networks are created

based on phosphomotif and protein–protein interac-

tion networks [74]. Predictions of kinase–substrate

interactions based solely on phosphomotif have low

accuracy. However, predictions of relationships are

greatly improved by taking into consideration the

network context. Many of these predicted relation-

ships were verified using experimental methods [74].

In total, this study shows that the topological posi-

tion of kinases, phosphatases and their substrates pro-

vides rich information that will be useful for

understanding and prediction of the network.

UNDERSTANDING
PHOSPHORYLATION NETWORKS
With most proteins having multiple phosphosites,

most kinases having numerous substrates and most

substrates being mediated by many kinases and sub-

strates, phosphorylation cannot be understood simply

as pair-wise interactions or even linear pathways.

Comprehensive and accurate understanding of pro-

tein phosphorylation must take into account all the

intricate and complex interrelationships between all

the different components. Phosphorylation net-

works, as an important part of cellular networks,

are defined by the components, that is, kinase and

substrates, and the phosphorylation events among

those components. One of the most powerful ways

of understanding phosphorylation as a network

instead of a group of disparate pair-wise relationships

is that the overall signal pathways can be discerned

[92, 93].

Specificity of kinase^substrate
relationship
Identification of consensus sequences (motifs) that

the kinases recognize can help us understand the

specificity of kinase^substrate interactions. Some

well-studied kinases have known phosphorylation

motifs identified as the results of traditional experi-

mental studies. In addition, global studies of phos-

phorylation networks accumulate large amounts of

data on phosphorylation sites. All of these motifs and

sites are now consolidated into different databases,

including PhosphoELM [94, 95], PhosphoSite [96]

and Human Protein Reference Database [97].

Computational tools are extremely helpful in

determining and generating phosphorylation motifs

from known phosphoproteins [76, 98, 99].

Understanding protein phosphorylation on a systems level 37



Currently available motif-generating tools include

Scansite [100], Phosida [101] or NetPhos [102,

103] and motif-x [104]. In particular, motif-x algo-

rithm discovered overrepresented motifs in a number

of phosphorylation studies. A more recent study was

aimed at creating an atlas of consensus sequence

motifs derived from kinase-specific data covering

179 kinases and 104 phosphorylation-dependent

binding domains [98].

However, it is worth noting that phosphorylation

motif is not the sole determinant for the specificity of

the kinase^substrate interactions. Physical protein^
protein interactions can help facilitate the phosphor-

ylation reaction. Third, proteins (scaffold proteins)

can also contribute to the specificity of kinase^sub-

strate interactions [105].

From in vitro to in vivo networks
Despite the many aforementioned advances in iden-

tification of kinase^substrate interactions by protein

microarray assays or computational predictions, these

interactions may be more indicative of invitro than in
vivo relationships of kinases and substrates, and the

identified substrates may not be physiologically rele-

vant targets since special environments within cells

are not present in in vitro assays; differences include

presence of regulatory subunits, protein subcellular

compartmentalization, regulation in gene expression

dynamics and tissue specificity. Therefore, in vitro
false positives must be separated from true in vivo
relationships. Many different bioinformatics meth-

odologies, alone or in combination, have been pro-

posed and applied to this problem, including artificial

neural networks based on experimentally verified

phosphorylation sites [102] and evolutionary proteo-

mics approach [90]. Linding and coworkers, for

example, recently proposed a computational

approach to map known phosphorylation sites to

their corresponding kinases using motif-based pre-

dictions with the network context of kinases and

phosphoproteins, including pathway information

and coexpression data [91]. The authors found that

network context improved the success rate of iden-

tification of physiologically relevant kinase–substrate

interactions, and they further validated several new

kinase in vivo targets associated with a DNA damage

signaling pathway.

Global properties of networks
For a more comprehensive understanding of the

functions of phosphorylation in the cellular context,

it is important to integrate phosphorylation networks

with other well-studied cellular networks. In a recent

study involving a global investigation of protein

phosphorylation in yeast, a phosphorylation network

was constructed through integration with the large

data sets covering protein–protein interactions and

transcription factor (TF) binding sites. It is notable

that the largest group of substrates is TFs, suggesting

the importance of phosphorylation in the regulation

of cellular activity. Interestingly, in the search for

regulatory connections, these seemingly complex

networks can be simplified into several types of reg-

ulatory modules: interacting substrates, scaffold,

kinase cascade, TF-regulated kinase, kinase regula-

tion, kinase feedback loops I and II and heterosub-

strate regulation module [5]. This finding reveals

some of the basic network building blocks within

the more extensive network, allowing researchers

to start seeing and decoding these complex interre-

lationships that exist within the cellular regulatory

network.

Dynamics of phosphorylation networks
Phosphorylation is not only a reversible but also a

dynamic process that fluctuates in response to differ-

ent stimuli and conditions. A complete picture of

global phosphorylation can only be seen when one

considers different cell states, responses to stimuli or

different time courses. Therefore, quantifying tem-

poral dynamics requires high sensitivity, accurate

quantification and analysis of multiple time points.

One approach is to perturb components of a phos-

phorylation network and observe the behavior of

other components. MS has been used to explore

the dynamics of a phosphorylation network.

The general paradigm is to differentially label samples

prior to MS to allow for eventual comparison, which

will reveal dynamic changes of components in the

phosphorylation network during a time course of a

particular treatment or during differential treatments

[58, 106]. A common strategy of sample labeling is

stable isotope labeling by amino acids in cell culture

(SILAC) [107]. With this method, cells are grown

differently with isotopically labeled amino acids. This

then allows for comparative quantization in MS. In a

recent study, SILAC-encoded cells were used after

being stimulated with epidermal growth factor

(EGF) to determine temporal dynamics of phosphor-

ylation proteins and their sites as a function of stim-

ulus, time and subcellular location. In total, more

than 6000 phosphorylation sites and over 1000 sites

38 Lin et al.



whose phosphorylation was modulated by EGF

stimulation were identified [58]. The dynamic phos-

phorylation network provides a global and integra-

tive view of cellular regulation.

SUMMARY
In the past decade, significant progress has been

made in understanding kinases, substrates and their

interacting relationship on a systems level. While

these developments are still in their early stages, the

preliminary results and the importance of compre-

hensive global pictures of phosphorylation have

already been shown to be important and effective.

However, many more advances need to be made to

better elucidate the functions of protein phosphory-

lation: (i) a deeper coverage of phosphoproteins and

a complete mapping of kinase–substrate pairs; (ii) a

comprehensive understanding of the dynamic rela-

tionships as a network; (iii) the integration of infor-

mation from other networks, such as protein–protein

interaction, transcription and other PTM networks.

We expect that these upcoming studies will provide

a representative and complete view of protein phos-

phorylation and its role in controlling cellular

processes.
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