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Abstract
Microbes play important roles in human health and disease. The interaction between 

microbes and hosts is a reciprocal relationship, which remains largely under-explored. 

Current computational resources lack manually and consistently curated data to 

connect metagenomic data to pathogenic microbes, microbial core genes, and disease 

phenotypes. We developed the MicroPhenoDB database by manually curating and 

consistently integrating microbe-disease association data. MicroPhenoDB provides 

5677 non-redundant associations between 1781 microbes and 542 human disease 

phenotypes across more than 22 human body sites. MicroPhenoDB also provides 

696,934 relationships between 27,277 unique clade-specific core genes and 685 

microbes. Disease phenotypes are classified and described using the Experimental 

Factor Ontology (EFO). A refined score model was developed to prioritize the 

associations based on evidential metrics. The sequence search option in 

MicroPhenoDB enables rapid identification of existing pathogenic microbes in 

samples without running the usual metagenomic data processing and assembly. 

MicroPhenoDB offers data browsing, searching, and visualization through 

user-friendly web interfaces and web service application programming interfaces. 

MicroPhenoDB is the first database platform to detail the relationships between 

pathogenic microbes, core genes, and disease phenotypes. It will accelerate 

metagenomic data analysis and assist studies in decoding microbes related to human 

diseases. MicroPhenoDB is available through http://www.liwzlab.cn/microphenodb 

and http://lilab2.sysu.edu.cn/microphenodb.

KEYWORDS: Pathogenic microbes; Metagenomic data; Disease phenotypes; 

Microbe-disease association; COVID-19

http://www.liwzlab.cn/microphenodb
http://lilab2.sysu.edu.cn/microphenodb


Introduction
The human body feeds a large number of microbes, mainly composed of bacteria, 

followed by archaea, fungi, viruses, and protozoa. Microbes, inhabiting various 

organs of the human body, mainly in the gastrointestinal tract, as well as in the 

respiratory tract, oral cavity, stomach, and skin, play important roles in human health 

and disease [1−3]. Microbial gene products have rich biochemical and metabolic 

activities in the host [4−6]. Microorganisms usually form a healthy symbiotic 

relationship with the host. However, when the microbial content becomes abnormal or 

exogenous microbes infect the host, the balance of host microecology can be broken, 

which in turn can possibly cause various diseases [7,8]. Tripartite network analysis in 

patients with irritable bowel syndrome demonstrated that the gut microbe Clostridia is 

significantly associated with brain functional connectivity and gastrointestinal 

sensorimotor function [9]. Strati et al. reported that Rett syndrome is substantially 

associated with a dysbiosis of both bacterial and fungal components of the gut 

microbiota [10]. The alteration of microbial communities on psoriatic skin is different 

from those on healthy skin and has a potential role in Th17 polarization to exacerbate 

cutaneous inflammation [11]. The ongoing pandemic of coronavirus disease 2019 

(COVID-19) has affected more than 220 countries, areas, or territories worldwide by 

November 2020. Lung injury has been reported in most patients with confirmed 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [12].

The interaction between microbes and hosts is a reciprocal relationship and 

remains largely under-explored [13]. Accurate relationship information between 

microbes and diseases can greatly assist studies in human health [14]. With the wide 

application of next-generation sequencing (NGS) technology, microbiological 

analysis methods and standards are being rapidly developed, such as metagenomic 

approaches [15]. As a result, a large amount of experimental data has been published 

[16]. Thus accurate database platforms are greatly needed to utilize these 

experimental data, determine the composition of pathogenic microbes in hosts, clarify 

microbial-disease relationships, and provide standardized high-quality annotation for 

clinical uses [17].

Due to the functional and clinical significance of microbes, several public 

databases have been established to collect microbe-disease association data, such as 

the Human Microbe-Disease Association Database (HMDAD) [18], Disbiome [19], 



the Virulence Factor Database (VFDB) [20], and the Comprehensive Antibiotic 

Resistance Database (CARD) [21]. HMDAD and Disbiome collate text-mining-based 

microbe–disease association data from peer-reviewed publications and describe the 

strength of the associations based on the credibility of the data sources. VFDB 

provides up-to-date knowledge of the virulence factors (VFs) of various bacterial 

pathogens; CARD contains high-quality reference data on the molecular basis of 

antimicrobial resistance with an emphasis on genes, proteins, and mutations involved. 

Data in VFDB and CARD help to explain the relationship between pathogenic 

microbial genes and the health status of hosts. In addition, to assist physicians and 

healthcare providers to quickly and accurately diagnose infectious diseases in 

patients, a guideline for utilization of the microbiology laboratory for diagnosis of 

infectious diseases was developed and is being regularly updated by the Infectious 

Diseases Society of America (IDSA) and the American Society for Microbiology 

(ASM) [22]. The curation and analysis of microbe-disease association data are 

essential for expediting translational research and application. However, these 

computational resources lack manually and consistently curated data to connect 

metagenomic data to pathogenic microbes, microbial core genes, and disease 

phenotypes.

To bridge this gap, we developed the MicroPhenoDB database 

(http://www.liwzlab.cn/microphenodb) by manually curating and consistently 

integrating microbe-disease association data. We collected and curated the 

microbe-disease associations from the IDSA guideline [22], the National Cancer 

Institute (NCI) Thesaurus OBO Edition (NCIT) [23], and the HMDAD [18] and 

Disbiome [19] databases, and also connected microbial core genes derived from the 

MetaPhlAn2 dataset [24] to pathogenic microbes and human diseases. A refined score 

model was adopted to prioritize the microbe-disease associations based on evidential 

metrics [18,25]. In addition, a sequence search web application was also implemented 

to allow users to query sequencing data to identify pathogenic microbes in 

metagenomic samples, as well as to retrieve the disease-related information of 

virulence factors and antibiotic resistances. MicroPhenoDB allows users to browse, 

search, access, and analyze data through user-friendly web interfaces, visualizations, 

and web service application programming interfaces (APIs).

http://www.liwzlab.cn/microphenodb


Data collection and processing
Data collection and manual annotation

To ensure data quality, we integrated the association data with annotations from 

HMDAD and Disbiome and manually collated and curated microbe-disease 

association data from the IDSA guideline and NCIT (Figure 1). The IDSA guideline 

provides criteria for clinical identification of infectious microbes, while NCIT is a 

reference terminology that provides comprehensive information for infectious 

microbes. To enrich the annotation for disease-microbe associations, we manually 

traced the relevant literature in HMDAD and Disbiome; we also provided the 

microbes with annotation at the resolution of species levels, such as taxonomies and 

official names. Association data between infectious microbes and diseases in IDSA 

were extracted. Relevant information about disease phenotypes and microbes in the 

microorganism notes from NCIT were extracted as well. The collected and integrated 

association data include information about microbe symbols, disease symbols, the 

increased or decreased impacts of the microbes, PubMed identifiers, and validation 

methods. 

Controlled vocabulary and ontology to describe microbes and diseases

In MicroPhenoDB, several standard terminology and controlled vocabulary resources 

were adopted to consistently annotate microbes and diseases (Figure 1). Different 

tools and reference databases might give different taxonomies for microbes. To avoid 

this discrepancy, the official names of microbes were taken from NCIT [23], and the 

taxonomy identifiers were adopted from the National Center for Biotechnology 

Information (NCBI) [26] and UniProt [27]. The relationships between core genes and 

microbes were annotated using the MetaPhlAn2 tool [28], the microbial gene 

functions were annotated using the InterProScan tool [29], and the virulence factors 

and the drug resistance information of microbes were retrieved respectively from the 

databases of VFDB [20] and CARD [21]. The disease phenotypes were annotated 

with official names, experimental factor terms, definitions, classifications, and 

cross-references using the Experimental Factor Ontology (EFO) [30]. EFO provides a 

systematic description of many experimental variables across the European 

Bioinformatics Institute (EMBL-EBI) databases and the National Human Genome 

Research Institute (NHGRI) genome-wide association study (GWAS) catalog [31]; it 



also combines parts of several popular ontologies, such as Orphanet Rare Disease 

Ontology [32], Human Phenotype Ontology [33], and Monarch Disease Ontology 

[34]. The versions or releases of databases and tools used in the MicroPhenoDB 

construction are detailed in Table S1.

Association score model

One of the main problems in exploiting extensive collections of aggregated 

microbiome data is how to prioritize the associations. According to the previous 

studies by Ma et al. [18] and Pinero et al. [25], we refined the association score model 

to prioritize the microbe-disease associations using additional evidential metrics, 

including the number of sources that report the association, the type of curation of 

each source, and the number of supporting publications in the manual curation.

For every disease i and every microbe j, the raw score of their relationship 

Raw_scoreij was defined as: 

             Raw_scoreij =  (WIDSA +  WNCIT +  WLiterature) ×  log(N/nj)

(1)

In Equation (1), WIDSA is the weight of the association source from the IDSA 

guideline, WNCIT is the weight of the association source from NCIT, and WLiterature is 

the weight of the association source from literature publications. N is the number of 

all diseases in MicroPhenoDB, and nj is the number of diseases associated with 

microbe j. Log(N/nj) is computed to increase Raw_scoreij for the microbes that 

areassociated explicitly with few diseases or decrease Raw_scoreij for the microbes 

globally associated with several diverse diseases.

In Equations (2)−(4), MicroPhenoDB assigns different weights to different 

evidential sources according to their reliabilities (Table 1) [25]. If the association is 

curated from literature publications, WLiterature is initially assigned as 0.25, otherwise 

assigned as 0. If the association is curated from NCIT [23], WNCIT is initially assigned 

as 0.5, which is double that of WLiterature, otherwise assigned as 0. If the association is 

curated from IDSA [22], WIDSA is initially assigned as 1.0, which is double that of 

WNCIT, otherwise assigned as 0. The three weights also depend on the direction of the 

abundance change of a microbe in a disease and the number of supporting 

publications. Dij ( Dij ∈{1，−1} ) represents the direction of the abundance change of 

microbe j in disease i. If the microbe j is increased in the case of disease i, Dij equals 



1; if the microbe j is decreased in the case of disease i, Dij equals −1. np is the number 

of publications in which an association between a disease and a microbe has been 

reported. From the distribution of numbers of evidence, we found np was less than 16 

and mostly ranged from 1 to 2 (Figure S1).

          (2)WLiterature =  {Dij ×  0.25 ×  np    Association from literature
0                               Otherwise  

                (3)WNCIT =  {Dij ×  0.5             Association from NCIT
0                               Otherwise

                (4)WIDSA =  {Dij ×  1.0              Association from IDSA
0                              Otherwise

             (5)𝑆coreij =
2

1 +
1

ⅇ𝑅𝑎𝑤_𝑠𝑐𝑜𝑟𝑒ⅈ𝑗

―1

Finally, the sigmoid function was used to normalize Raw_scoreij to limit the range of 

the final association score Scoreij from −1 to 1. In Equation (5), ‘e’ represents the 

natural constant e. Scoreij can be used to judge the confidence of the relationship 

between a microbe and a disease phenotype. Please see the score distribution in 

Figure 2. A Scoreij more than 0 indicates that the occurrence of the disease correlates 

with an increase of the microbial abundance, and a Scoreij less than 0 indicates that 

the occurrence of the disease correlates with a decrease of the microbial abundance. 

The greater the absolute value of Scoreij, the higher the number of previous reports of 

the respective microbe-disease association; the closer the score is to zero, the lower 

the number of previous reports of the respective microbe-disease association. By 

investigating the Scoreij distribution, most associations were found with Scoreij 

between −0.3 and 0.3, and the two peaks with Scoreij more than 0.3 were involved in 

high confidence associations from NCIT and IDSA (Figure 2). This suggested that the 

score points of −0.3 and 0.3 would be the highly reliable thresholds to assess the 

confidence level of an association. 

Implementation

The web applications in MicroPhenoDB were implemented in Java language by using 

the model-view-controller model and the SpringBoot framework and were deployed 

on an Apache Tomcat web server. The association data of microbes and disease 

phenotypes were stored in a MySQL database. Data access, search, and visualization 



were implemented by using the Ajax API technology. The frontend interface was 

visualized by using the Vue.js framework. The sequence search tool was implemented 

using the EMBL-EBI tool framework [35].

Database content and usage
Database content

MicroPhenoDB collated 7449 redundant associations between 1781 microbes and 542 

human disease phenotypes across more than 22 human body sites (Table 2).  Of the 

7449 associations, 29.7% were manually curated from the IDSA guideline (1196,  

16.1%) [22], NCIT (849, 11.4%) [23], and peer-reviewed publications for human 

respiratory infection virus (164, 2.2%), and the others were consistently integrated 

with annotation from HMDAD (673, 9.0%) [18] and Disbiome (4567, 61.3%) [19] 

(Figure 3A). Multiple publications might support the same association between a 

microbe and a disease phenotype. After removing data redundancy based on the 

supporting publications, MicroPhenoDB produced 5677 non-redundant 

microbe-disease phenotype associations (Table 2). The number of non-redundant 

associations was over 11-fold (5677/483) of that in HMDAD. Each non-redundant 

association was assigned with a unique accession number (e.g., MBP00000900) and 

an association score. For the microbe distribution, MicroPhenoDB contained 1497 

bacteria in a broad sense (including 1474 bacteria in a narrow sense, 11 Rickettsia, 6 

Chlamydia, 4 Ehrlichia, and 2 Mycoplasma), 183 viruses, 58 fungi, and 43 parasites 

(Table 2). Approximately 88.3% (5014/5677), 8.5% (481/5677), 2.0% (116/5677), 

and 1.2% (66/5677) of the associations were related to bacteria, viruses, fungi, and 

parasites respectively (Figure 3B). The top six frequent disease-associated bacteria 

phyla were Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, 

and Fusobacteria. The top disease-associated fungal phylum was Ascomycota. 

Firmicutes included 271 genus/species in 4 classes (Bacilli, Clostridia, 

Erysipelotrichia, and Negativicutes) (Figure 3C). The microbes were mainly 

distributed in the body sites of the gastrointestinal tract (37.3%), oral cavity (9.5%), 

respiratory tract (6.9%), skin and soft tissue (4.2%), urinary tract (3.5%), vagina 

(2.5%), and central nervous system (2.0%) (Table 3). The disease phenotypes were 

classified and described by EFO [30]. Many diseases were associated with pathogenic 

microorganisms, such as bacterial, digestive, nervous, and autoimmune diseases 

(Figure 3D). 



In total, 27,277 unique clade-specific core genes of 685 bacteria and viruses were 

retrieved from the dataset in MetaPhlAn2 and were annotated with gene functions 

using InterProScan (Table 2). In addition, 4204 virulence factor genes and 2522 drug 

resistance genes were also included from VFDB [20] and CARD [21], respectively. A 

small percentage ((4.3%, 65/1497) and (4.4%, 66/1497)) of bacteria was annotated 

with virulence factor information and antimicrobial resistance information, 

respectively (Table 2). 

Web interface

The MicroPhenoDB website (http://www.liwzlab.cn/microphenodb) provides 

user-friendly web interfaces to enable users to search, browse, prioritize, and analyze 

the microbe-disease association data in the database (Figure 4). The website offers 

multiple optional search applications of microbes, diseases, and associations to 

acquire prioritized association data with body site and microbe type filters. The 

prioritized microbe-disease associations can be downloaded as a CSV file for further 

analysis. The hierarchical structure of microbes and diseases are respectively 

displayed on the ‘Browse’ web page. Information regarding the increasing or 

decreasing tendency of microbial abundance in a disease, virulence factor, and 

antibiotic resistance of the microbes, along with its core gene information, are 

available on the ‘Browse’ web page. In addition, MicroPhenoDB provides the web 

service APIs for programmatical access of the association data and produces an output 

in the JSON format. All the association data and the API documentation are available 

on the website. Users are also encouraged to submit their data of newly published 

microbe-disease associations. Once checked by our professional curators and 

approved by the submission review committee, the submitted record will be included 

in an updated release. 

Applications of association data

MicroPhenoDB sequence search to explore metagenomics data

In MicroPhenoDB, microbes were connected with diseases through 5677 

non-redundant associations and linked to unique clade-specific core genes via 

696,934 relationships (Figure 5). Core genes could serve as a hub to connect 

metagenomic sequencing data to microbes and their associated diseases (Figure 5). A 

sequence search application was implemented on the MicroPhenoDB website 

(http://www.liwzlab.cn/microphenodb/#/tool) to allow users to query their 

metagenomic sequencing data against the MicroPhenoDB sequence datasets through 

http://www.liwzlab.cn/microphenodb


the sequence alignment tools BLAST [36] and Bowtie2 [37] (Figure 5). The 

application can directly identify the composition of pathogenic microorganisms in 

metagenomic samples and can suggest potential disease phenotypes that may be 

caused without running the usual metagenomic sequencing data processing and 

assembly, which are both time and resource consuming. Functional annotation for 

microbial core genes by the application includes gene ontology and pathway 

information. Searching against the sequence datasets of microbial pathogenic factors 

and drug resistance genes allows identifying homologous genes and proteins related 

to virulence factors and antibiotic resistance (Figure 5). 

To assess the sequence search usability, we used the sequence search application 

to analyze an existing metagenomic dataset downloaded from the Genome Sequence 

Archive (accession: PRJCA000880) [38]. The dataset contained metagenomics data 

of lung biopsy tissues from 20 patients with pulmonary infection [39]. Our results 

identified pathogenic microbes in 95% (19 of 20) of patients, significantly higher than 

the 75% identification rate (15 of 20) found through the original metagenomic NGS 

(mNGS) analysis [39]. In addition, our search identified 37 pathogenic microbes in 

patients, while the mNGS method only identified 29 (Table S2). Of the 37 microbes, 

23 were identical to those by mNGS analysis. It was hard to estimate the false 

positives of the other 14 microbes, but we found that they may cause infections in 

patients with underlying diseases such as immunodeficiency. Therefore, this 

comparison suggested that the MicroPhenoDB sequence search application could 

screen metagenomic data for effective identification of pathogenic microbes. Due to 

the large size of metagenomic data and the need for a broadband network, we provide 

a software package of the search application for users to download and run locally. 

We also encourage users to upload the microbial abundance information to the online 

application for further analysis and visualization. 

Distinguish clinical phenotypes of SARS-CoV-2 infection from different viral 

respiratory infections

The single-stranded RNA coronavirus SARS-CoV-2 can infect humans and cause 

COVID-19 disease [40]. Its structure is similar to those of viruses causing severe 

acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) 

[41] . At present, the diagnosis of SARS-CoV-2 infection is mainly based on clinical 

phenotypes, chest computed tomography (CT), and nucleic acid testing. Compared 

with CT and nucleic acid testing, clinical phenotype monitoring has significant 



advantages, such as a short turnaround time, low cost, and convenience [42]. To 

distinguish clinical phenotypes of SARS-CoV-2 infection from different viral 

respiratory infections, we searched MicroPhenoDB and obtained association data that 

contained 63 disease phenotypes and 14 respiratory tract infection viruses, such as 

human rhinovirus, parainfluenza virus, respiratory syncytial virus, metapneumovirus, 

and coronaviruses. The data were then imported into the Cytoscape software [43] for 

network analysis. The output network (Figure 6) indicated that SARS-CoV-2 shares 

the clinical phenotype of pneumonia with the majority of other respiratory infection 

viruses, as well as the clinical phenotypes of dry-cough, headache, fever, myalgia, 

vomiting, diarrhea, and respiratory disease syndrome (underlined in green) with 

several influenza viruses and other coronaviruses. Importantly, the network also 

showed that dyspnea, fatigue, lymphopenia, anorexia, and septic shock (underlined in 

blue) were common clinical phenotypes of SARS-CoV-2 infection distinguished from 

other viral respiratory infections [12,44,45]. Bear in mind that these phenotypes of 

SARS-CoV-2 infection might be frequent complications of other diseases and 

treatments. For example, dyspnea is a frequent complication of chronic respiratory 

diseases [46], lung cancer [47], and hepatopulmonary syndrome [48]; septic shock is a 

complication of pneumococcal pneumonia, chronic corticosteroid treatment, and 

current tobacco smoking [49]; fatigue is a complication of multi-type cancers [50,51] 

and Parkinson’s disease [52]; lymphopenia is a complication of human 

immunodeficiency viral infection [53]. However, our results suggest that these 

common clinical phenotypes could distinguish SARS-CoV-2 infection from infections 

by SARS-CoV, MERS-CoV, and other respiratory viruses.

Association network in different body sites

The microbe-disease association data can be downloaded and used for further 

analysis. To generate a network to explore the reliable connections between the 

microbial changes and the diseases in multiple body sites, we obtained the association 

data of body sites such as the vagina, urinary tract, and genitals using the reliable 

association score thresholds mentioned above (> 0.3 and < −0.3). The resulting 

association data were imported into the Cytoscape software [43] for network analysis. 

The output network (Figure 7) indicated that the decreasing abundance of 

Lactobacillus (underlined in red) was related to vaginal inflammation and bacterial 

vaginosis in the vagina, while the increasing abundance of Chlamydia (underlined in 



green) resulted in lymphogranuloma venereum in the genitals. Moreover, the network 

showed that the increasing abundance of Mycoplasma genitalium (underlined in blue) 

was associated with multiple diseases, which involve genitals, such as pelvic 

inflammatory disease, nongonococcal urethritis, and nonchlamydial nongonococcal 

urethritis. Furthermore, the network showed that a microbe abnormality could be 

associated with diseases involving different body sites. For example, the increasing 

abundance of Neisseria gonorrhoeae (underlined in purple) was associated with two 

diseases, each in the genitals and urinary tract. For users to assess the microbial 

pathogenicity, it is recommended to filter the data by using the association scores and 

follow the supporting publications for further investigation. Users can follow our 

step-by-step guidelines on the website 

(http://www.liwzlab.cn/microphenodb/#/guideline) to perform similar association 

analyses and generate Cytoscape networks. 

Concluding remarks
Microbes play important roles in human health and disease. The curation and analysis 

of microbe-disease association data are essential for expediting translational research 

and application. In this study, we developed the MicroPhenoDB database by manually 

curating and consistently integrating microbe-disease association data. As far as we 

are aware, MicroPhenoDB is the first database platform to detail the relationships 

between pathogenic microbes, core genes, and disease phenotypes. In terms of data 

coverage, scoring models, and web applications, MicroPhenoDB outperformed data 

resources that contain similar association data (Table 4). For example, the numbers of 

associations, microbes, disease phenotypes, and supporting evidence in 

MicroPhenoDB were approximately 11.1, 6.1, 13.9, and 18.9-fold of those in 

HMDAD, respectively. Compared with both HMDAD and Disbiome, MicroPhenoDB 

refined the confidence scoring model using additional evidential metrics with 

different weights; it standardized the association annotations by manual curation and 

included pathogenic data of virulence factors, microbial core genes, and antibiotic 

resistance gens. Moreover, MicroPhenoDB implemented web applications and APIs 

for pathogenic microbe identifications in metagenomic data. 

In MicroPhenoDB, many associations with confident scores came from our 

manual curation of the up-to-date clinical guidelines supported by IDSA and ASM. 

MicroPhenoDB assigned higher weight values to the associations derived from the 



guidelines and lower weight values to the associations from other literature data and 

databases. The original model for scoring confidence of the disease-microbe 

associations in HMDAD was based on a single literature evidence. Our 

MicroPhenoDB score model rated different supporting evidence according to the 

credibility of related sources and provided a score to evaluate a disease-microbe 

association.

By integrating unique, clade-specific microbial core genes and using the data 

from MetaPhlAn2, the MicroPhenoDB sequence search application enables rapid 

identification of existing pathogenic microorganisms in metagenomic samples without 

running the usual sequencing data processing and assembly. However, the resulting 

associations from the sequence search do not guarantee microbial pathogenicity but 

provide clues for further investigation. The annotated core genes are also limited in 

size and cannot represent all microbial species. To consistently analyze the important 

functions of microbes, other data or tools are also recommended, such as UniRef 

clusters [54], MetaCyc [55], HUMAnN2 [56], and pan-genomic data. 

To serve the research community, we will update the database every six months 

and constantly improve it with more features and functionalities. As a novel and 

unique resource, MicroPhenoDB connects pathogenic microbes, microbial core genes, 

and disease phenotypes; therefore, it can be used in metagenomic data analyses and 

assist studies in decoding microbes associated with human diseases.

Data availability
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please visit http://www.liwzlab.cn/microphenodb/#/download.
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Figure legends
Figure 1  Workflow demonstrating the construction and curation of the 

MicroPhenoDB database

CARD, Comprehensive Antibiotic Resistance Database; EFO, Experimental Factor 

Ontology; HMDAD, Human Microbe-Disease Association Database; IDSA, 

Infectious Diseases Society of America; NCIT, National Cancer Institute Thesaurus;  

VFDB, Virulence Factor Database.

Figure 2  The distribution of association scores in MicroPhenoDB

Figure 3  Data content and distribution in MicroPhenoDB

A. The association data collected from different resources. B. The distribution of 

different microbe types. C. The number of bacterial species in different phyla. D. The 

disease distribution in MicroPhenoDB. 

Note: HMDAD, Human Microbe-Disease Association Database; IDSA, Infectious 

Diseases Society of America; NCIT, National Cancer Institute Thesaurus.



Figure 4  The MicroPhenoDB web interface

Figure 5  The MicroPhenoDB sequence search connects microbes, core genes 

and disease phenotypes

BLAST, Basic Local Alignment Search Tool; SQL, Structure Query Language.

Figure 6  The Cytoscape network illustrates different clinical phenotypes across 

different viral respiratory infections

The diamonds represent the respiratory infection viruses. The red circles represent the 

disease phenotypes. Lager size of a circle or a diamond indicates more connections to 

a disease phenotype or a virus. The solid connection lines represent the associations 

between clinical phenotypes and viruses. Underlines indicate the clinical phenotypes 

discussed in the main text.

Figure 7  The Cytoscape network illustrates the associations between clinical 

phenotypes and microbes at different body sites

The diamonds represent clinical phenotypes resulted from a microbial abnormality at 

different body sites. The red circles represent the microbes. Lager size of a circle or a 

diamond indicates more connections to a clinical phenotype or a virus. The solid 

connection lines represent the associations between diseases and microbes with an 

increase in microbial abundance, and the dash connection lines represent the 

associations between diseases and microbes with a decrease in microbial abundance. 

Underlines indicate the microbes discussed in the main text.

Tables

Table 1  The weight of different evidential sources according to their 

reliabilities

Table 2  Data scope and scale in MicroPhenoDB  

Table 3  The top ten body sites of disease-associated microbes in 

MicroPhenoDB  

Table 4  Data content and web applications of MicroPhenoDB compared with 



HMDAD and Disbiome

Supplementary material
Figure S1  The distribution of numbers of supporting publications

The blue histogram represents the frequency of the number of supporting 

publications. 

Table S1  The version or release of databases and tools used in the 

MicroPhenoDB construction

Table S2  The analysis result by MicroPhenoDB sequence search in an existing 

metagenomic dataset (GSA: PRJCA000880)

Table 1  The weight of different evidential sources according to their reliabilities 

Evidence Evidence definition Weight

Literature
Author statement supported by traceable literature 

used in manual assertion
0.25

Data resource
Statement supported by manual curate data resource 

such as NCIT
0.5

Guideline Consensus statement supported by the IDSA guideline 1.0

Note: IDSA, Infectious Diseases Society of America; NCIT, National Cancer Institute 

Thesaurus OBO Edition.

Table 2  Data scope and scale in MicroPhenoDB

Data scope Data scale
Association 5677 non-redundant microbe-disease associations
Microbe 1781 microbe species including 1497 bacteria in a broad sense (including 

1474 bacteria in a narrow sense, 11 Rickettsia, 6 Chlamydia, 4 Ehrlichia, 



and 2 Mycoplasma), 183 viruses, 58 fungi, and 43 parasites
Disease phenotype 542 disease phenotypes annotated with EFO across more than 22 body sites
Core gene 685 bacteria and viruses annotated with 27,277 unique clade-specific core 

genes
Virulence factor 65 (4.3% of 1497) bacteria annotated with information of more than 4204 

virulence factors, including pathogenic species, virulence factor gene name, 
characteristics structure, and pathogenic mechanism

Antibiotic resistance 
data

66 (4.4% of 1497) bacteria annotated with information of more than 2522 
antimicrobial resistances, including resistance genes, resistance 
mechanisms, and related antibiotics

Table 3  The top ten body sites of disease-associated microbes in 

MicroPhenoDB

Body site Association number Percentage
Gastrointestinal tract 2119 37.3% 
Oral cavity 542 9.5%
Respiratory tract 391 6.9%
Skin and soft tissue 239 4.2%
Urinary tract 197 3.5%
Vagina 143 2.5%
Central nervous system 114 2.0%
Nasal cavity 85 1.5%
Bloodstream 83 1.5%
Throat 69 1.2%

Table 4  Data content and web applications of MicroPhenoDB compared with 

HMDAD and Disbiome

Data content & web 
applications MicroPhenoDB HMDAD Disbiome MicroPheno

DB/HMDAD
MicroPhenoD
B/Disbiome

Association data 7449 673 4567 11.1 1.6

Microbe organism 1781 292 1292 6.1 1.4



Microbe standardized 
annotation 1041 - - - -

Organism taxonomy 1032 - - - -

Disease phenotype 542 39 282 13.9 1.9
Disease standardized 
annotation 446 - - - -

Supporting evidence 1150 61 822 18.9 1.4

Association score Yes None None - -

Virulence factor 4204 - - - -

Antibiotic resistance gene 2522 - - - -

Core gene 696,934 - - - -

Sequence alignment Yes None None - -
Identification of pathogenic 
microbe Yes None None - -

Web service API Yes None None - -

Note: HMDAD, Human Microbe-Disease Association Database; API, Application 
Programming Interface.










