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Abstract  9 

Spatial transcriptomics (ST) has emerged as a transformative approach for comprehending tissue 10 

architecture with molecular profiles. However, amalgamating discrete two-dimensional (2D) ST 11 

snapshots into a unified 3D atlas remains an outstanding challenge. To this end, we introduce STAIR, 12 

an end-to-end solution for ST alignment, integration, and de novo 3D reconstruction. STAIR uses a 13 

heterogeneous graph attention network with spot-level and slice-level attention mechanisms to 14 

obtain a unified embedding space and guide 3D space reconstruction in an unsupervised manner. 15 

We demonstrate STAIR's marked improvements in slice alignment and integration across samples 16 

and platforms over the previous methods. Furthermore, STAIR shows first-of-its-kind performance 17 

in de novo 3D reconstruction, with demonstrations in mouse hypothalamus preoptic area, mouse 18 

brain, and breast tumor tissue, which provides precise delineation of brain regions and reveals tumor 19 

progression in 3D space. Additionally, STAIR integrates additional slices into the existing 3D atlas 20 

incorporating both molecular features and physical coordinates. STAIR is the first to address the 21 

core obstacles limiting 3D positioning and harnessing alignments for atlas construction and 22 

assimilation. It lays a computational foundation to construct unified tissue maps and provides novel 23 

biological insights from a 3D perspective. 24 

 25 

Keywords 26 

Spatial transcriptome, de novo 3D reconstruction, Alignment, Integration, Heterogeneous graph 27 

attention network  28 



Introduction 29 

Recently remarkable advancements have enabled the generation of spatial transcriptomic (ST) data 30 

that captures gene expression with preserved spatial context. Various sequencing techniques1-7 31 

facilitate exploring molecular features within tissues from a spatial perspective. To study an organ 32 

or tissue in three-dimensional (3D) space, researchers sampled parallel slices of specific samples at 33 

certain distance intervals, where individual slices capture spatially resolved molecular features in a 34 

single plane8-10. At present, construction of ST-based molecular atlases is ongoing, such as mouse 35 

brain8, macaque brain10, and drosophila embryo9. By revealing topological structures organ-wide, 36 

these studies advance our comprehension of molecular drivers of tissue organization.  37 

Several computational methods including PASTE11, PRECAST12, STAligner13 and STitch3D14 38 

have enabled important advancements in handling multi-slice ST data. Specifically, PRECAST12 39 

introduced a novel probabilistic approach mainly focusing on spatial embedding integration. 40 

PASTE11 proposed an innovative method for 2D coordinate alignment by balancing expression and 41 

physical proximity to obtain optimal transport between slices. STAligner13 made pioneering work 42 

in the unified alignment of both embeddings and coordinates. It first employed graph attention 43 

networks with triplet loss for integrating spatial embeddings, followed by aligning 2D coordinates 44 

based on the selection of landmark domains that are uniformly shaped across slices. While most 45 

methods aligning physical space perform only 2D coordinate registration, more recently, STitch3D14 46 

pioneered intriguing 3D analytical capability by jointly modeling multiple slices. It reconstructed 47 

3D views of tissue structures, cell distributions, and developmental trajectories with the requirement 48 

of additional single-cell data. 49 

 The previous methods such as STaligner and STitch3D utilized known inter-slice distance or 50 

3D coordinates for 3D reconstruction. However, this information can be unavailable or unreliable 51 

when integrating across-sample, across-study sections with non-standardizable slice distances, 52 

severely limiting multi-source 3D assembly. Therefore, computed inference of inter-relationship 53 

positioning is imperative to enable coherent fusion. Regrettably, current solutions do not furnish this 54 

capability. In addition, existing reconstructed atlases also have minimal capacity for quantitative 55 

annotation transfer or assimilation of emerging data, impeding continued knowledge accumulation 56 



within fixed spatial references. 57 

To address these challenges, we developed STAIR, an integrated solution for end-to-end 58 

alignment, integration, and de novo 3D construction. STAIR utilizes heterogeneous graph attention 59 

network15 to learn spatial embedding, and completes the reconstruction of physical location based 60 

on this. Unlike previous methods relying on known slice distance or known 3D coordinates, STAIR 61 

requires only ST data as input and infers the relative positioning of slices along z-axis in a 62 

completely unsupervised manner. In addition, STAIR seamlessly integrates new slices into the 63 

existing 3D atlas, expanding and updating the reference 3D atlas. We demonstrated STAIR’s 64 

superior performance over existing methods for spatial features and 2D coordinates alignment 65 

across various datasets. Furthermore, STAIR was the first-of-its-kind method for de novo 3D 66 

reconstruction, with demonstrations of mouse hypothalamic preoptic area, whole mouse brain, and 67 

tumor tissue. Finally, STAIR achieved seamless integration of a new slice from a different ST 68 

platform into a constructed 3D atlas, accurately transferring the annotation information in the atlas 69 

to the new slice. STAIR is publicly available as an open-source Python package at 70 

https://github.com/yuyuanyuana/STAIR. 71 

 72 

Results 73 

Overview of the STAIR framework 74 

STAIR achieves integration and alignment of molecular features and physical coordinates for ST 75 

data, enabling 3D reconstruction and assimilation of new slices into the reference atlases (Fig. 1). It 76 

takes only ST data as input and outputs aligned spatial embeddings and coordinates. It comprises 77 

two central modules (Fig. 1A), STAIR-Emb performs embedding alignment, while STAIR-Loc 78 

handles coordinate registration. Spatial domains and developmental trajectories are derived solely 79 

from the aligned embeddings via clustering and trajectory inference, respectively. Thus, relying on 80 

multi-slice data alone, STAIR is capable of de novo 3D reconstruction and further obtaining discrete 81 

organizational structures and continuous dynamic relationships in 3D space. 82 

For embedding alignment (Fig. 1A, left), an autoencoder with batch factor16,17 performs 83 

https://github.com/yuyuanyuana/STAIR


nonlinear dimensionality reduction to account for platform-specific effects in gene expression. 84 

STAIR-Emb then constructs a heterogeneous graph with spots across all slices as nodes, and the 85 

node attribution is decided by their original slices. Connectivity for spots in the same slice is defined 86 

by spatial neighborhoods while inter-slice edges are weighted by gene expression affinities from the 87 

encoder output since the relative positions between slices are unknown. Subsequently, STAIR-Emb 88 

employs an attention mechanism15 consisting of spot-level and slice-level attention for adaptive 89 

information aggregation within and between slices, obtaining low-dimensional spatial features of 90 

spots that encapsulate rich biological signals. In parallel, the attention score produces inter-slice 91 

relationship matrices reflecting higher-order tissue correspondences.  92 

For coordinate registration (Fig. 1A, right), STAIR-Loc implements a two-step procedure 93 

between slice pairs. In the initial alignment, rotation, scaling, and translation guided by anchor 94 

correspondences in the embedding produce an approximate overlay. In the fine alignment, STAIR-95 

Loc employs the Iterative Closest Point (ICP)18 algorithm for precise registration based on boundary 96 

points of the slices and the most aggregated domain. By sequential application across ordered slices, 97 

this procedure reconstructs a stacked 3D physical map. 98 

For a fully unsupervised 3D reconstruction from an arbitrary set of parallel slices (Fig. 1B), z-99 

axis coordinates are first reconstructed from inter-slice attention scores derived from STAIR-Emb 100 

using a minimum spanning tree (MST)19. These predicted z-coordinates are then used to guide x-101 

axis and y-axis alignment using STAIR-Loc. Post-reconstruction, seamlessly assimilating additional 102 

acquisitions is also enabled (Fig. 1C). The z-coordinate of a new slice is initially predicted by 103 

leveraging attention-based inter-slice proximity scoring to identify the nearest neighboring atlas 104 

slices for weighted positional estimation. The most proximal atlas slice serves as a spatial template 105 

to scale and align the x- and y-coordinates of the new data. At this stage, annotated atlas information 106 

like standard anatomical region labels can be accurately propagated to newly integrated slices. This 107 

continual expansion over time enhances the utility and applicability of an established 3D reference. 108 

STAIR effectively integrates heterogeneous ST data in spatial embeddings 109 

We first quantitatively evaluated STAIR’s efficacy in integrating spatial embeddings and identifying 110 

unified spatial domains across diverse tissue sections, a prerequisite for downstream analysis. 111 



Effective integration should identify shared signals across specimens while retaining biologically 112 

unique variations within each individual sample. 113 

Our initial testing utilized 10X Visium dataset derived from the human dorsolateral prefrontal 114 

cortex (DLPFC)20, spanning three samples with four sequential sections per sample. The original 115 

study performed precise manual annotation, delineating white matter (WM) and six gray matter 116 

layers ranging from Layer 1 to Layer 6 to provide ground truth labels (Fig. 2A). First, we conducted 117 

separate spatial domain identification from slices of each sample, which had close locations with 118 

some differences. STAIR achieved the most accurate domain division results on all three samples 119 

(Fig. 2B, Supplementary Fig. S1), with respective median Adjusted Rand Index (ARI) values of 120 

0.60, 0.53, 0.62 (Fig. 2C). 121 

Then, we processed twelve slices from three samples simultaneously (Fig. 2D; Supplementary 122 

Fig. S2A). STitch3D was excluded from this test due to its requirement for 3D coordinates to handle 123 

multiple slices, which were not available. Despite the challenge, STAIR maintained the highest 124 

consistency with annotations, achieving a median ARI value of 0.65, far exceeding the second-125 

ranked STAligner with a median value of 0.46 (Fig. 2C, right). Notably, simultaneous consideration 126 

of three samples proved superior to evaluating each sample individually, resulting in higher ARI 127 

and a clearer demarcation between Layer 4, Layer 5, and Layer 6 (Fig. 2B to D). Subsequently, we 128 

performed low-dimensional visualization using uniform manifold approximation and projection 129 

(UMAP)21 based on the spatial embeddings derived by these methods (Supplementary Fig. S2B). 130 

In the STAIR-based visualization, all spots exhibited an arrangement according to the layers, with 131 

thorough mixing between the different samples. In contrast, both STAligner and PRECAST lacked 132 

clarity in arranging and distinguishing these known layers. Specifically, STAligner mixed Layer 2 133 

and Layer 3, as well as Layer 4 to Layer 6, while PRECAST only distinguished WM. We also 134 

quantified the effects of spatial embedding learning and integration using Average Silhouette width 135 

(ASW). We calculated ASW for spatial embeddings with respect to spatial domains (𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛) 136 

and samples (𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ ), as well as 𝐴𝑆𝑊𝐹1  to evaluate overall capability (Methods). Higher 137 𝐴𝑆𝑊𝐹1  and 𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛  coupled with lower 𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ  indicates better performance. STAIR 138 

achieved best spatial embedding learning and integrating with the highest 𝐴𝑆𝑊𝐹1 (Supplementary 139 



Fig. S2C). STAligner also adequately integrated samples, as indicated by an 𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ  value 140 

similar to STAIR. However, it had weaker feature learning capabilities with a much lower 141 𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛, which was consistent with the unclear UMAP pattern we observed previously.  142 

Moreover, to evaluate cross-platform integration, we applied STAIR to integrate mouse 143 

olfactory bulb data from Stereo-seq22 and Slide-seqV223, which differed in resolution and area. 144 

Stereo-seq covered the main olfactory bulb (MOB) at sub-single-cell resolution, whereas Slide-145 

seqV2 encompassed both MOB and the accessory olfactory bulb (AOB) with a resolution of 10 μm, 146 

approximating single-cell. STAIR clearly delineated the MOB region common to both datasets and 147 

the AOB region unique to Slide-seqV2 (Fig. 2E, top), highly consistent with standard Allen Brain 148 

Atlas (ABA) partitioning (Supplementary Fig. S2D). The AOB region, situated in the middle and 149 

upper part of the olfactory bulb, comprised two sub-regions: AOBmi and AOBgr. The MOB region 150 

encompassed seven sub-regions arranged in a concentric ring: Rostral migratory stream (RMS), 151 

Granule cell layer (GCL), two Mitral cell layers (MCLs), External plexiform layer (EPL), 152 

Glomerular layer (GL), and Olfactory nerve layer (ONL). In contrast, STAligner struggled to 153 

identify the RMS layer and confused the EPL and GL layers of Stereo-seq (Fig. 2E, middle). 154 

PRECAST failed to identify coherent spatial patterns (Fig. 2E, bottom). UMAP visualization further 155 

showed STAIR effectively distinguished between AOB and MOB in low-dimensional space, 156 

preserving the AOBmi and AOBgr sub-regions in Slide-seqV2 data (Fig. 2F, G). Simultaneously, 157 

STAIR seamlessly integrated the shared MOB region, arranging sub-layers consistent by physical 158 

locations. Conversely, while STAligner achieved integration to a certain extent, it failed to discern 159 

the distinct difference between AOB and MOB. PRECAST completely mixed the datasets, losing 160 

Slide-seqV2 specificity. 161 

In summary, STAIR successfully integrated the spatial embeddings across slices within 162 

samples, across samples, and across platforms, ensuring a consistent spatial region division and 163 

preserving unique biological variations. 164 

Precise alignment of 2D coordinates across slices by STAIR 165 

A single ST sequencing only acquires data from one slice, resulting in the loss of the unified physical 166 

space across multiple slices. Aligning spatial embeddings across diverse ST slices enables unified 167 



molecular feature space that encapsulates spatial information. In this section, we evaluate STAIR’s 168 

ability in aligning and integrating ST slices in 2D coordinates (x- and y-axis).  169 

We utilized 12 MERFISH slices of the preoptic area of the mouse hypothalamus2 with known 170 

3D positions. To test the 2D position alignment of slices, we introduced random rotations and 171 

translations to 11 slices while keeping the first slice fixed (Fig. 3A). Subsequently, we employed 172 

STAIR, PASTE, and STitch3D on the rotated slices and assessed their effectiveness (Fig. 3B). 173 

STAIR stood out as the most precise alignment, closely recovering actual coordinates. In contrast, 174 

STitch3D and PASTE struggled with accurate alignment. Quantitatively, the median rotation and 175 

translation errors (Methods) for STAIR were 0.03 and 0.04 mm (Fig. 3C). Similar results were 176 

obtained across 500 random simulations (Supplementary Fig. S3A). In contrast, PASTE exhibited 177 

rotation and translation errors of 1.53 and 1.81, while STitch3D had errors of 2.0 and 2.1, 178 

respectively (Fig. 3C). 179 

We further assessed STAIR’s robustness on the alignment of 2D coordinates. First, we 180 

examined the impact of resolution by aggregating neighboring cells into virtual lower resolution 181 

spots (Supplementary Fig. S3B). With 2-5 aggregated cells per spot, STAIR maintained low median 182 

rotation errors of 0.02-0.07 and translation errors of 0.04-0.10 (Supplementary Fig. S3C). In contrast, 183 

PASTE had errors between 1.54-1.55 for rotation and 1.78-1.80 for translation, while STitch3D 184 

ranged from 1.23-1.93 and 1.78-2.25, respectively. Additionally, given that fine alignment relied on 185 

spatial region information, we examined performance across 8-15 spatial regions (Supplementary 186 

Fig. S3D). STAIR demonstrated stable alignment, with median rotation errors of 0.02-0.08 and 187 

translation errors of 0.03-0.09. 188 

In short, ground truth hypothalamus data confirmed STAIR's capabilities for precise 2D slice 189 

alignment and robustness across varied resolution and spatial domains. 190 

Construction of de novo 3D atlas by STAIR 191 

Although we aligned spatial embeddings and 2D spatial coordinates, computational construction of 192 

de novo 3D atlas with only ST data posed a significant challenge. One of the key difficulties was 193 

computationally determining inter-slice position because the slices used for constructing atlas might 194 

come from varied samples, lacking standardized inter-slice distances. Hence, we aimed to build a 195 



3D atlas without prior position knowledge or paired images.  196 

First, we tested z-axis coordinate reconstruction on 12 mouse hypothalamic preoptic area slices 197 

generated by MERFISH, where the z-axis location of each slice was known which could serve as a 198 

ground truth2. We employed STAIR-Emb (Supplementary Fig. S4A, B) and the inter-slice attention 199 

score derived from STAIR-Emb showed a strong negative correlation with physical distance 200 

(Spearman's 𝜌 = -0.88, Fig. 4A, B), indicating its potential to reconstructing z-axis. By employing 201 

MST on attention matrix, we achieved accurate z-axis reconstruction, evidenced by the Pearson 202 

correlation coefficient (𝑃𝐶𝐶) of 1 and coefficient of determination (𝑅2) of 1 with the ground 203 

truth of z-axis coordinates (Fig. 4C). We further sequentially aligned the x-axis and y-axis of slices 204 

followed by the reconstructed z-axis. This process led to precise de novo 3D coordinates (Fig. 4A, 205 

right), showing high consistency with the known 3D coordinates (Fig. 4D). Moreover, we added an 206 

additional 12 slices from another sample of a different gender, and the results showed high accuracy 207 

for the prediction of the total 24 slices by STAIR, with 𝑃𝐶𝐶 and 𝑅2 of 0.99 and 0.94, respectively 208 

(Supplementary Fig. S4C to E). 209 

Next, we took a more challenging task using 40 mouse brain slices across three different 210 

samples generated from the ST platform8. This dataset covered 40 coronal hemi-brain sections from 211 

the olfactory bulb to the hindbrain. The original study provided anteroposterior (AP)-axis 212 

coordinates based on paired images and Bregma coordinates of the brain24 (Fig. 4E, left). We started 213 

by using STAIR-Emb to achieve efficient spatial feature integration and spatial region division (Fig. 214 

4F). Despite complexity, a robust correlation between attention scores and physical positions 215 

persisted, with a 𝜌 of -0.83 (Fig. 4E middle, Supplementary Fig. S5A, left). Further, 𝑃𝐶𝐶 and 𝑅2 216 

between reconstructed AP-axis and the ground truth were as high as 0.98 and 0.96, respectively 217 

(Supplementary Fig. S5A, right). Subsequently, we employed STAIR-Loc to align dorsoventral 218 

(DV)-axis and mediolateral (ML)-axis coordinates based on the slice order of reconstructed AP axis 219 

coordinates, completing the 3D de novo construction (Fig. 4E, right; Supplementary Fig. S5B). The 220 

accuracy of spatial positioning of each domain was evident by high expression of their 221 

corresponding marker genes (Fig. 4G). For instance, there was high expression of marker genes Dsp 222 

25, Gpr88 26,27, Ramp3 28,29, and Camk2n1 30 in the hippocampus, striatum, thalamus, and superficial 223 



cortex, respectively. To sum up, STAIR enabled accurate de novo 3D reconstruction based on ST 224 

slices only. 225 

3D modeling of breast tumor microenvironment 226 

To further illustrate biological insights provided by 3D atlas, we analyzed the HER2-positive breast 227 

cancer31 ST data comprising three consecutive slices (H1 to H3) (Supplementary Fig. S6A). The 228 

pathologists31 annotated one slice (H1) with six tissue types: invasive cancer, adipose tissue, 229 

connective tissue, breast glands, in situ cancer, and immune infiltrates (Fig. 5A). 230 

First, STAIR integrated the spatial embeddings of all the three slices, yielding spatial domains 231 

highly consistent with the pathological annotations (Supplementary Fig. S6B). On slice H1, STAIR 232 

achieved an ARI of 0.36, surpassing that of STAligner, STitch3D, and PRECAST, which ranged 233 

from 0.30 to 0.32 (Supplementary Fig. S6C). Recognizing the inherent distinctions between 234 

transcriptome and pathological phenotypes, we deconvoluted32 each spot with scRNA-seq33 data to 235 

facilitate spatial domain annotation (Supplementary Fig. S7). STAIR's spatial regions were 236 

annotated as connective tissue, immune cancer, breast glands, adipose tissue, fibrous tissue near the 237 

tumor, invasive cancer, and two in situ cancer regions (Fig. 5B). In contrast, STAligner failed to 238 

differentiate the in situ cancer area from the invasive cancer area (cluster 0) (Supplementary Fig. 239 

S6B). STitch3D could not distinguish between the two in situ cancer areas (cluster 4). PRECAST 240 

struggled to separate the two spatially distinct in situ cancer areas (cluster 2, 3, and 5). Additionally, 241 

none of them could detect a heterogeneous region near tumor with fewer cancer cells and more 242 

immune cells (cluster 7). 243 

Next, we reconstructed the 3D coordinates. The inferred z-axis distance, at 0.52/0.43, closely 244 

corresponded the true distance ratio. We then aligned the x-axis and y-axis positions in the order of 245 

the z-axis, revealing a continuous structure for each spatial region in the 3D space (Fig. 5C). While 246 

STAligner and STitch3D cannot infer z-axis, we compared STAIR with them in 2D coordinates 247 

alignment (Supplementary Fig. S6D) and employed LISI metric to assess the spatial clustered 248 

pattern of domains in the stacked 2D space, which was a comprehensive measure of spatial domain 249 

identification and 2D coordinates alignment (Supplementary Fig. S6E). STAIR showed best 250 

performance with the lowest median LISI value of 1.53. 251 



Furthermore, we examined developmental trajectories34 and 3D heterogeneity of tumor-252 

associated domains. To select the initial domain of the developmental trajectory, we conducted a 253 

differential expression analysis of two in situ cancer regions (Supplementary Fig. S8A). In situ 254 

cancer-1, marked by high expression of the ERBB2 35 gene and S100 family genes 36, showcased 255 

stronger malignancy and invasive potential. In contrast, in situ cancer-2, chosen as the starting 256 

region for trajectory inference, showed a relatively lower malignancy and a higher immune level, 257 

confirmed by overexpressed HLA family37 genes and enriched immune cells. The trajectory 258 

unveiled a progression from in situ cancer-2 to in situ cancer-1, invasive cancer, and fibrous tissue 259 

near the tumor (Fig. 5D, Supplementary Fig. S8B), with genes exhibiting expression changes along 260 

the developmental trajectory (Fig. 5E). Notably, within the same area, tumor invasion exhibited 261 

inter-slice heterogeneity on the z-axis. For instance, in situ cancer-1 displayed a trend from H3 to 262 

H1, while in situ cancer-2 exhibited a trend from H1 and H3 to H2. Invasive cancer also followed a 263 

progression from H3 to H1 (Fig. 5F, Supplementary Fig. S8C). 264 

To conclude, STAIR discerned tumor heterogeneity that cannot be identified by the other 265 

methods by integrating three ST slices. The 3D reconstruction of tumor tissue enabled analyzing 266 

heterogeneity of invasion paths in a 3D view. 267 

Assimilating new sections into a reference atlas with STAIR 268 

Finally, we tested STAIR’s ability to integrate new slices into 3D atlas with molecular feature and 269 

physical coordinates, which enables continuous expansion and update of the existing 3D atlas.  270 

We first assessed the ability for predicting the z-axis of new slices by STAIR. By sequentially 271 

masking the known z-axis coordinates of 12 slices in the MERFISH mouse hypothalamic preoptic 272 

dataset, we predicted the masked values based on attention scores. Remarkably, the 𝑃𝐶𝐶 between 273 

predicted and actual coordinates was 0.98, with an 𝑅2 of 0.95. Expanding this analysis to 24 slices 274 

from two hypothalamic preoptic samples, the 𝑃𝐶𝐶  and 𝑅2  still reached 0.98 and 0.94, 275 

respectively. Further testing on 40 ST mouse brain slices resulted in even higher 𝑃𝐶𝐶  and 𝑅2 276 

values of 0.99 and 0.98, respectively (Supplementary Fig. S9). Our analysis showed that STAIR 277 

enabled accurate z-axis prediction, even for slices from multiple samples. 278 

Next, we evaluated its capability to integrate new slices into the existing 3D atlas. We 279 



integrated a new slice from the Visium platform into an existing 3D ST-platform brain atlas 8, which 280 

was aligned to Allen Mouse Common Coordinate Framework (CCF) 38 3D space through 281 

experimental information and image registration. We input 40 ST and the Visium slice into STAIR-282 

Emb for inter-slice attention scoring (Fig. 6A) and seamlessly mixed spatial embeddings (Fig. 6B). 283 

Leveraging attention scores to predict the position of the new slice (Methods), we identified the 284 

nearest neighbor slice, 20A, in the 3D brain atlas. By taking the 2D coordinates of 20A as a reference 285 

template, STAIR-Loc performed scaling, rotation, and translation on the new Visium slice to map 286 

CCF 3D coordinates (Fig. 6C). Additionally, leveraging detailed spatial anatomical region 287 

annotations from the ABA, we secured regional information for each spot in the Visium slice (Fig. 288 

6D). The UMAP-based visualization revealed internal clustering of anatomical regions and 289 

separation between regions (Fig. 6E). We further demonstrated the accuracy of regional annotation 290 

of the new Visium slice based on the expression of specific markers, such as Cabp7, Hpca1, Gpr88, 291 

Rora, Mbp and Pmch, which exhibited high expression in hippocampus, hippocampal formation, 292 

striatum, thalamus, fiber tracts and hypothalamus, respectively. 293 

To summarize, STAIR enabled integrating new slices into a 3D atlas which might be generated 294 

from a different ST platform. 295 

 296 

Discussion 297 

The rapid advances in ST have ushered in new opportunities for exploring tissue architecture with 298 

gene expression patterns. However, connecting perspectives across discrete 2D slices to enable 299 

unambiguous 3D biological comprehension presented persistent computational challenges. Here, 300 

we provide an integrated solution for robust alignment, construction to 3D modelling, and 301 

assimilation of emerging data. 302 

STAIR achieves accurate spatial embedding and coordinate alignment, enabling pioneering de 303 

novo 3D atlas construction from ST slices only. Its superior efficacy and broad functionality are 304 

attributed to the attention mechanism of the heterogeneous graph attention network. First, it enables 305 

adaptive feature aggregation by capturing spot-level and slice-level relationships, thereby obtaining 306 

spatial embeddings informed by broader context. These embeddings further enable slice anchor 307 



pairs to initialize 2D alignments. Second, the attention mechanism is highly interpretable and 308 

versatile. High-order semantic modeling captures the physical relationships between slices and 309 

provides an innovative z-axis positioning mechanism, which facilitates multi-sample 3D 310 

reconstruction and seamless assimilation of new slices. 311 

While most of the previous ST aligners focus on 2D alignment or integration, STAIR and 312 

STitch3D take multiple parallel ST slices as input and aim to create integrated 3D spatial atlases. 313 

However, STAIR is technically distinguished from STitch3D in several aspects. (1) Input flexibility: 314 

STAIR requires only ST data as input, making it more readily applicable to datasets where matched 315 

single-cell data is not available. (2) De novo 3D reconstruction: STAIR can infer relative positioning 316 

of slices along the z-axis in a completely unsupervised manner. This enables fully data-driven 3D 317 

reconstruction without relying on known slice spacing or order information. (3) New slice 318 

assimilation: STAIR can predict the positioning of new slices based on attention score proximities 319 

and situate them within existing 3D atlases by transferring coordinate templates. This unique 320 

capability paves the way for continually expanding spatial references. (4) Coordinate alignment: 321 

While STitch3D aligns spots by 3D coordinate registration, STAIR offers an alternative approach 322 

using sequential 2D alignment between slice pairs guided by learned spatial embeddings. This 323 

provides greater flexibility when 3D location inputs are unreliable or unavailable. 324 

Despite progress, further innovation must meet escalating biological complexity and spatial 325 

dimension. First, one current limitation is the effective integration of datasets from platforms with 326 

highly divergent resolutions, such as attempting to jointly analyze Stereo-seq data that profiles 327 

transcriptomes at subcellular resolution with ST data that assays much larger tissue spots. Second, 328 

integration of ST datasets with other data types such as spatial proteome will be a significant 329 

challenge. At application horizon, advancing analytical tools based on 3D atlas are needed. For 330 

example, most current spatially variable gene identification primarily models in 2D space, whereas 331 

capturing full organ system patterns in 3D could provide deeper biological insights. 332 

In conclusion, STAIR provides a unified algorithm advancing analysis of multi-slice ST data, 333 

including alignment, integration, and de novo 3D reconstruction. This advancement facilitates the 334 

creation of spatial maps for diverse organs, enabling the exploration of molecular mechanisms 335 



underlying tissue structure phenotypes in a true 3D dimension. 336 

 337 

STAIR algorithm 338 

Data preprocessing. Suppose that there are 𝑆 slices denoted as 𝐴1, 𝐴2, ⋯ , 𝐴𝑠, each containing 339 

respective numbers of spots 𝑁1, 𝑁2, ⋯ , 𝑁𝑠 . Among these slices,  𝐺  genes are common. 340 

Consequently, the gene expression data can be represented as a matrix 𝑋 of dimensions 𝑁 × 𝐺, 341 

where 𝑁 = 𝑁1 +  𝑁2 + ⋯ + 𝑁𝑠 is the total number of spots across all slices. The spatial coordinate 342 

data is stored in a matrix 𝑌  of dimensions 𝑁 × 2  or 𝑁 × 3  depending on if the z-dimension 343 

exists, and it is sufficient to input an 𝑁 × 2 dimensional coordinate matrix for STAIR. The raw 344 

gene expression counts in 𝑋 are normalized based on library size and then log-transformed to get 345 

the normalized expression matrix �̃�.  346 

To remove batch effects in expression features across various slices, we employed an 347 

autoencoder alongside batch annotation 16 𝑏𝑛𝑠. If the 𝑛th spot is from the 𝑠th slice, we set 𝑏𝑛𝑠 =348 1; otherwise, we set 𝑏𝑛𝑠 = 0. Given the assumptions of negative binomial (NB) or zero-inflated 349 

negative binomial (ZINB) distributions in gene expression, the preprocessing framework is: 350 𝑍 = 𝑓1(�̃�||𝐵) 351 𝑍′ = 𝑓2(𝑍||𝐵) 352 𝑅 = 𝑓3(𝑍′) 353 𝛱 = 𝑓4(𝑍′) 354 

Encoder 𝑓1 contains two layers compressing the expression matrix into a 32-dimensional low-355 

dimensional feature matrix 𝑍. The decoder first uses 𝑓2 to decode 𝑍 and batch information into 356 

a 128-dimensional feature matrix 𝑍′, the parameters of NB distribution (𝑅, 𝐿) and zero-inflated 357 

probability Π  are then learned based on 𝑍′ . The objective is to minimize reconstruction loss 358 

between 𝑋  and the NB/ZINB distribution parameterized by (Π, R, P) . The loss function is the 359 

NB/ZINB negative log-likelihood. 360 

 361 

Spatial embedding alignment. We use a heterogeneous graph attention network 15 to learn 362 

integrated spatial features across slices. 363 



 364 

Construction of heterogeneous graph. We attribute node characteristics to each spot based on the 365 

slice it belongs to. Distinct approaches are employed to establish edges for spots located within the 366 

same slice and those positioned across different slices. 367 

For spots in the same slice, we build homogeneous edges based on the physical location of the 368 

spot. For a spot with index 𝑗 in slice 𝐴𝐽, the set of its intra-slice neighbors 𝒩𝑗 is identified by K-369 

Nearest Neighbor (KNN) based on spatial coordinates.  370 

For spots not within the same slice, since their relative physical coordinates are unknown, we 371 

construct heterogeneous edges based on the expression similarity obtained in the preprocessing step. 372 

Only nodes with highly consistent expression features are connected. For spots 𝑗 from slice 𝐴𝐽 373 

and 𝑘 from slice 𝐴𝐾, the edge exists if 𝑧𝑘 ∙ 𝑧𝑗 > t. We usually set t = 0.9 and denote the inter-374 

slice neighbors of spot 𝑗 from slice 𝐴𝐾 as 𝒩𝑗𝐽𝐾. 375 

 376 

Intra-slice information aggregation. To learn the spatial features of each spot, we first aggregate the 377 

information from intra-slice neighbors based on homogeneous edges separately for each slice. 378 

We adopted the same model architecture and aggregation method as the graph attention network 379 

(GAT) module in SECE39, and obtained the homogeneous spatial feature 𝑈ℎ𝑜𝑚  based on 380 

homogeneous edges, 381 𝑈ℎ𝑜𝑚 = GAT(𝑍, 𝑌) 382 

where 𝑍 is the expression feature of the spot obtained by the preprocessing module. 383 

 384 

Inter-slice information aggregation. Further, we employ spot and slice level attention to aggregate 385 

inter-slice information adaptively.   386 

First, we learn spot-level attention. For two spots 𝑖 and 𝑗 from slices 𝐴𝐼 and 𝐴𝐽 connected 387 

by heterogeneous edge, the spot-level attention 𝑒𝑖𝑗𝐼𝐽 between them represents the importance of spot 388 𝑗 to 𝑖, namely, 389 𝑒𝑖𝑗𝐼𝐽 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑞𝐼𝐽𝑇 [𝑊𝐼𝐽1𝑢𝑖ℎ𝑜𝑚||𝑊𝐼𝐽2𝑢𝑗ℎ𝑜𝑚]) 390 

where 𝑊𝐼𝐽1  and 𝑊𝐼𝐽2 are weight matrices specific to slice pairs, 𝑞𝐼𝐽 is a learnable vector, and 𝑒𝑖𝑗𝐼𝐽 391 



is an asymmetric attention matrix that contains pairwise attention between slices 𝐴𝐼 and 𝐴𝐽. The 392 

final inter-slice spot level attention matrix 𝛼𝑖𝑗𝐼𝐽 is obtained by normalizing 𝑒𝑖𝑗𝐼𝐽: 393 

𝛼𝑖𝑗𝐼𝐽 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗𝐼𝐽) = exp(𝑒𝑖𝑗𝐼𝐽)∑ exp(𝑒𝑖𝑘𝐼𝐽)𝑘∈𝒩𝑖𝐼𝐽 . 394 

For a node 𝑖 from slice 𝐴𝐼, its spot-level heterogeneity based on neighbors in slice 𝐴𝐽 is:  395 𝑢𝑖𝐼𝐽 = 𝜎 (∑ 𝛼𝑖𝑗𝐼𝐽 ∙ 𝑢𝑗ℎ𝑜𝑚𝑗∈𝒩𝑖𝐼𝐽 ). 396 

Then, we learn slice-level attention. Different slices contribute differently to target slice and 397 

we adaptively learn how much each slice contributes to others. For the slice 𝐴𝐼 to be learned, the 398 

slice-level importance of slice 𝐴𝐽 to 𝐴𝐼 is: 399 𝑤𝐼𝐽 = 1𝑁𝐼 ∑ 𝑞𝑇 ∙ tanh (𝑊 ∙ 𝑢𝑖𝐼𝐽 + 𝑏)𝑖∈𝐴𝐼 , 400 

where 𝑊 and 𝑏 are weight matrix and bias vector, 𝑞 is a learnable vector. Then normalize 𝑤𝐼𝐽 401 

to get the final slice level attention coefficient: 402 

𝛽𝐼𝐽 = exp(𝑤𝐼𝐽)∑ exp(𝑤𝐼𝐾)𝐾≠𝐼 . 403 

Therefore, the heterogeneity representation of slice 𝐴𝐼 based on other slices is: 404 𝑈𝐼ℎ𝑒𝑡 = ∑ 𝛽𝐼𝐽𝐽≠𝐼 𝑈𝐼𝐽. 405 

 406 

Model learning and training. For each slice, the final spatial feature matrix 𝑈  is obtained by 407 

combining the intra-slice representation 𝑈ℎ𝑜𝑚 and inter-slice heterogeneous representation 𝑈ℎ𝑒𝑡: 408 𝑈 = 𝜆 ∙ 𝑈ℎ𝑜𝑚 + (1 − 𝜆) ∙ 𝑈ℎ𝑒𝑡 409 

where 𝜆  weights the homogeneous and heterogeneous components with default value 0.8. The 410 

model is trained to ensure 𝑈 reliably represents the original spatial gene expression features 𝑍. 411 

The objective function is defined as the mean squared error between 𝑈 and 𝑍: 412 𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸(𝑈, 𝑍) 413 

In the training process, 𝑈 is set to 32 dimensions. The Adam optimizer is used for training 414 

with learning rate of 0.001. The default number of iterations is 150. 415 

 416 

Slice-level attention-based reconstruction and prediction in z-axis. The attention weight at the 417 



slice level, denoted as 𝛽𝐼𝐽, characterizes the collective impact of slice 𝐴𝐽 on 𝐴𝐼 within the spatial 418 

embedding learning process. This encapsulates intricate higher-order spatial semantic insights. 419 

Notably, the strong correlation between these weights and the actual distance between slices 420 

signifies the potential for deducing the physical placement of slices.  421 

 422 

De novo z-axis reconstruction for multiple slices. When we lack information about the third-423 

dimensional coordinates (𝑦1(3), ⋯ , 𝑦𝐼(3), ⋯ 𝑦𝑆(3))  of the slice, we can infer the positional 424 

relationships between these parallel slices based on the inter-slice attention scores. Specifically, we 425 

start by defining the distances between slices 𝐴𝐽  and 𝐴𝐼  as 𝑑𝐼𝐽 =  1 − 𝛽𝐼𝐽+𝛽𝐽𝐼2   and proceed to 426 

construct a Kruskal algorithm 19 based MST using network package implemented in Python. 427 

Subsequently, we select the given root slice 𝐴𝐼 and set its position as 𝑙𝐼 = 0. The positions of the 428 

remaining nodes are then determined by adding the distance between each node and its parent node's 429 

position. Lastly, we normalize the distances to obtain position predictions  (𝑙1 , 𝑙2 ⋯ , 𝑙𝑆) within the 430 

range of 0 to 1. Furthermore, for comparison with actual coordinates in the article, we additionally 431 

scale the normalized distances (𝑙1, 𝑙2 ⋯ , 𝑙𝑆) to match the real coordinate range. 432 

 433 

Z-axis prediction for new slice. When the z-axis coordinates (𝑦1(3) , 𝑦2(3), ⋯ 𝑦𝑆(3))  are known, in 434 

order to align the new slice 𝐴𝑛𝑒𝑤  into the unified 3D space, we predict 𝑦𝑛𝑒𝑤(3)   based on the 435 

attention vectors between 𝐴𝑛𝑒𝑤 and 𝐴1, 𝐴2, ⋯ , 𝐴𝑠, denoted as 𝛽1 = (𝛽𝑛𝑒𝑤,1 , 𝛽𝑛𝑒𝑤,2, ⋯ , 𝛽𝑛𝑒𝑤,𝑆) 436 

and 𝛽2 = (𝛽1,𝑛𝑒𝑤 , 𝛽2,𝑛𝑒𝑤 , ⋯ , 𝛽𝑆,𝑛𝑒𝑤). 437 

We first sort the elements of 𝛽1 and 𝛽2 in descending order, and choose the top 𝑁 elements 438 �̂�1 = (�̂�𝑛𝑒𝑤,𝑅11 , ⋯ , �̂�𝑛𝑒𝑤,𝑅𝑁1 )  and �̂�2 = (�̂�𝑛𝑒𝑤,𝑅12 , ⋯ , �̂�𝑛𝑒𝑤,𝑅𝑁2 ) . Following this, we identify the 439 

intersection of these element indices {𝑅1 , ⋯ , 𝑅𝑁′}, where 𝑁′ ≤ 𝑁. Finally, we perform weighted 440 

average on the z-axis corresponding to(𝑅1, ⋯ , 𝑅𝑁′) to get the predicted value of 𝑦𝑛𝑒𝑤(3) : 441 

�̂�𝑛𝑒𝑤(3) = ∑ 𝛽𝑛𝑒𝑤,𝐾 + 𝛽𝐾,𝑛𝑒𝑤2 ∙ 𝑦𝐾(3)𝐾∈{𝑅1,⋯,𝑅𝑁′}∑ 𝛽𝑛𝑒𝑤,𝐾 + 𝛽𝐾,𝑛𝑒𝑤2𝐾∈{𝑅1,⋯,𝑅𝑁′}           (1)  442 

 443 

Spatial location alignment. We employ a two-stage approach for 2D alignment in x-axis and y-444 



axis. In the initial stage, spatial features are utilized to identify spot pairs with precise matches, and 445 

initial transformation matrices are determined based on these pairs. In fine alignment stage, we first 446 

identify spots that effectively capture both global and local information within slices. The coordinate 447 

positions of these spots are then leveraged to execute ICP18 fine registration. 448 

 449 

Initial alignment. Consider slice 𝐴𝐼  with 𝑛𝐼  spots and slice 𝐴𝐽 with 𝑛𝐽 spots, along with their 450 

spatial feature sets {𝑢1𝐼 , 𝑢2𝐼 , ⋯ , 𝑢𝑛𝐼𝐼 }  and {𝑢1𝐽, 𝑢2𝐽, ⋯ , 𝑢𝑛𝐽𝐽 } , respectively. First, we measure the 451 

similarity between spots through the cosine distance based on spatial embeddings. The mutual 452 

nearest neighbors (MNN) of 𝑘 = 1 located in different slices form pairs for the initial alignment, 453 

resulting in curated pairs {(𝑖1 , 𝑗1), (𝑖2 , 𝑗2), ⋯ , (𝑖𝑛, 𝑗𝑛)}  along with their coordinates 454 {(𝑦𝑖1𝐼 , 𝑦𝑗1𝐽 ), (𝑦𝑖2𝐼 , 𝑦𝑗2𝐽 ), ⋯ , (𝑦𝑖𝑛𝐼 , 𝑦𝑗𝑛𝐽 )} . subsequently, we seek the optimal rotation matrix 𝑅  and 455 

translation vector 𝑡, to align the physical positions of the corresponding point sets. Consequently, 456 

the loss function for the initial alignment is formulated as: 457 

𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡 = ∑|𝑦𝑖k𝐼 − (𝑅𝑦𝑗k𝐽 + 𝑡)|2𝑛
𝑘=1  458 

Singular value decomposition40 solves for 𝑅  and 𝑡 . All spots are aligned to their targets 459 

accordingly. 460 

 461 

Fine alignment. The fine alignment stage involves two main steps: identifying informative anchor 462 

spots for capturing both regional details and global outlines specific to the slice, followed by the 463 

application of the classic ICP 18 algorithm. First, we select highly concentrated regions that are 464 

common to both slices, according to median of LISI value which implemented in R package lisi. 465 

Subsequently, we identify the concave hulls41 corresponding to the chosen regions and the slices. 466 

These concave hulls serve to depict both the local attributes of the region and the broader shape 467 

characteristics of the entire slice. Finally, ICP 18 algorithm is employed on these sets of informative 468 

points to achieve precise fine registration, resulting in our desired alignment outcome. 469 

 470 

Aligning new brain slices into existing ABA atlases. We employed a dataset consisting of 40 ST 471 



coronal brain slices with CCF 3D coordinate information, derived from a previous study 8, to serve 472 

as a foundational reference of whole-brain framework. To obtain the CCF 3D coordinates and 473 

anatomical region annotations of each spot in new slice, we incorporated it into the reference dataset 474 

through the following steps. 475 

First, we integrate the spatial embeddings of the new slice 𝐴𝑛𝑒𝑤 with the reference set {𝐴1, 𝐴2,476 ⋯ , 𝐴40 ,, obtaining the attention score associated with the 𝐴𝑛𝑒𝑤  and each reference slice. By 477 

applying formula (1), we predict the AP coordinate of the new slice, denoted as 𝑦𝐴𝑃𝑛𝑒𝑤. 478 

Then, we adjusted the ML and DV dimensions of 𝐴𝑛𝑒𝑤 to align with the CCF scale. We select 479 

the reference slice 𝐴𝐽 closest to 𝐴𝑛𝑒𝑤 according to 𝑦𝐴𝑃𝑛𝑒𝑤, followed by filtering MNN spot pairs 480 

based on cosine distances between spatial features. This filtering process generated a set of spot 481 

pairs { (𝑖1, 𝑗1), (𝑖2 , 𝑗2), ⋯ , (𝑖𝑛, 𝑗𝑛)} , each possessing corresponding ML and DV coordinates 482 {(𝑦𝑖1𝑛𝑒𝑤, 𝑦𝑗1𝐽 ) , (𝑦𝑖2𝑛𝑒𝑤, 𝑦𝑗2𝐽 ) , ⋯ , (𝑦𝑖𝑛𝑛𝑒𝑤, 𝑦𝑗𝑛𝐽 )}. Consequently, the scaling factor was calculated as:  483 

𝑠𝑐𝑎𝑙𝑒 = 𝑀𝑒𝑑𝑖𝑎𝑛𝑘1≠𝑘2 { |𝑦𝑗𝑘1𝐽 − 𝑦𝑗𝑘2𝐽 ||𝑦𝑖𝑘1𝑛𝑒𝑤 − 𝑦𝑖𝑘2𝑛𝑒𝑤|}. 484 

Next, the ML and DV orientations of slice 𝐴𝑛𝑒𝑤 are aligned into the CCF. We perform a two-485 

stage alignment of the scaled coordinates (see Spatial location alignment), thus effectively 486 

integrating the 3D coordinates of 𝐴𝑛𝑒𝑤 into the CCF. 487 

Finally, anatomical regions are assigned to each new spot based on location-specific 488 

information within the ABA annotation file annotation_25.nrrd from https://portal.brain-map.org/, 489 

establishing a mapping of the anatomical context for slice 𝐴𝑛𝑒𝑤. 490 

 491 

Toolkit for ST analysis 492 

Clustering for spatial domains. Clustering is conducted on integrated spatial embeddings to obtain 493 

unified spatial domains across ST slices. We employ mClust 42 clustering method implemented in 494 

R package rmclust.  495 

 496 

Spatial trajectory inference. Trajectory inference based on spatial embeddings is used to track the 497 

https://portal.brain-map.org/


development in spatial dimension. We utilize Monocle3 34 to perform the pseudo time inference for 498 

each spot based on UMAP derived from spatial embedding of STAIR by applying learn_graph and 499 

order_cells in Monocle3 package. Function graph_test is employed to find genes that change with 500 

pseudo time.  501 

 502 

Deconvolution. For HER2+ breast cancer dataset, we perform deconvolution to analyze the cell 503 

type composition using software Cell2location 32 and annotated scRNA-seq dataset 33. Cell2location 504 

is run according to the tutorial and default parameters. 505 

 506 

Differential expression analysis. We employ Seurat V443 to perform differential expression 507 

analysis. Differential expression analysis is used to identify cluster-specific marker genes where all 508 

the clusters are pairwise compared using the Wilcoxon method. Each identified marker gene was 509 

expressed in a minimum of 25% of cells and at a minimum log fold change threshold of 0.25.  510 

 511 

Evaluation 512 

Evaluation of spatial embedding alignment. Adjusted Rand index (ARI). ARI measures the 513 

consistency between spatial domains identified by different algorithms and the known anatomical 514 

region labels. Given the contingency table of intersections between the algorithm-generated 515 

domains and annotation-based labels, it is calculated as  516 

𝐴𝑅𝐼 = ∑ (𝑛𝑖𝑗2 )𝑖𝑗 − [∑ (𝑎𝑖2 )𝑖 ∑ (𝑏𝑗2 )𝑗 ]/ (𝑛2)12 [∑ (𝑎𝑖2 )𝑖 + ∑ (𝑏𝑗2 )𝑗 ] − [∑ (𝑎𝑖2 )𝑖 ∑ (𝑏𝑗2 )𝑗 ]/ (𝑛2) , 517 

where 𝑛𝑖𝑗 , 𝑎𝑖and 𝑏𝑖 are values from the contingency table. ARI values range from -1 to 1. Higher 518 

ARI indicates greater agreement with the ground truth annotations. 519 

 520 

Average Silhouette width (ASW). ASW evaluates how well the features match true clusters in the 521 

data. For every sample 𝑖，Silhouette width 𝑆(𝑖) is calculated as  522 𝑆(𝑖) = 𝑏(𝑖) − 𝑎(𝑖)max {𝑎(𝑖), 𝑏(𝑖)} 523 



where 𝑎(𝑖) is the average distance between i and points in its own cluster, and 𝑏(𝑖) is that to 524 

adjacent cluster points. ASW values range from -1 to 1, with greater ASW indicates better match. 525 

In this paper, we employ 𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛 and 𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ to measure the fitness of spatial features 526 

to known spatial regions and batches of slices, respectively. A larger 𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛 and a smaller 527 𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ value represent stronger feature learning and data integration capabilities. To evaluate 528 

the comprehensive performance of spatial features, we calculated the harmonic mean 𝐴𝑆𝑊𝐹1 of 529 𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛 and 1 − 𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ: 530 𝐴𝑆𝑊𝐹1 = 2(1 − 𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ)𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛1 − 𝐴𝑆𝑊𝑏𝑎𝑡𝑐ℎ + 𝐴𝑆𝑊𝑑𝑜𝑚𝑎𝑖𝑛  531 

Higher 𝐴𝑆𝑊𝐹1  indicates stronger comprehensive ability of feature integration and biological 532 

specificity retention. 533 

 534 

Evaluation of spatial alignment in x-axis and y-axis. To assess STAIR's capability for spatial 535 

alignment, we conducted simulations involving multiple slices, each with known 3D coordinates. 536 

Specifically, we maintained the spatial location of the first slice unchanged, while applying random 537 

rotations and translations to the remaining slices. Rotation angle 𝜃 ∈ (0, 𝜋), translation distance 538 𝑡(1) ∈ (−𝑎(1) , 𝑎(1)), 𝑡(2) ∈ (−𝑎(2), 𝑎(2)) , where 𝑎(1) = max(𝑦(1)) − min(𝑦(1)) , 𝑎(2) =539 max(𝑦(2)) − min(𝑦(2)). Note that the ground truth rotation angle and translation distance of 𝑆 − 1 540 

slices are {𝜃2, 𝜃3, ⋯ , 𝜃𝑆}  and {(𝑡(1)2 , 𝑡(2)2 ), (𝑡(1)3 , 𝑡(2)3 ), ⋯ , (𝑡(1)𝑆 , 𝑡(2)𝑆 )} , respectively. The error of 541 

rotation and translation are: 542 

∆𝜃= 1𝑆 − 1 ∑|𝜃𝐼 − 𝜃𝐼|𝑆
𝐼=2  543 

∆𝑡= 1𝑆 − 1 ∑ √(𝑡(1)𝐼 − �̂�(1)𝐼 )2 + (𝑡(2)𝐼 − �̂�(2)𝐼 )2𝑆
𝐼=2  544 

where 𝜃𝐼 and (�̂�(1)𝐼 , �̂�(2)𝐼 ) are rotation angle and translation distance of slice 𝐴𝐼 obtained by the 545 

algorithm to be evaluated, respectively. 546 

 547 

Evaluation of spatial domain identification and 2D coordinate alignment in HER2+ breast 548 

cancer. Local inverse Simpson’s index (LISI) measures the degree of local mixing, and we use it to 549 



evaluate the spatial aggregation pattern of domains in stacked 2D space. For each spot 𝑖, LISI is 550 

formulated as:  551 𝐿𝐼𝑆𝐼(𝑖) = 1∑ 𝑝𝑖(𝑙)𝑙∈𝐿 , 552 

where 𝑝𝑖(𝑙) is the probability that the spatial domain label l exists in the local neighborhood of 553 

sample i, and L is the set of spatial domains. Local neighborhoods are selected by stacked 2D 554 

coordinates. The value of LISI is in the range of [1,∞) , and smaller LISI indicates better 555 

aggregation pattern. 556 

 557 

Evaluation of z-axis reconstruction and prediction. We utilize the coefficient of determination 558 

( 𝑅2 ) and the Pearson correlation coefficient ( 𝑃𝐶𝐶 ) to quantify the effectiveness of z-axis 559 

reconstruction and prediction. Denoting the ground truth z-axis coordinate of the 𝑆  slices as 560 {𝑦(3)1 , 𝑦(3)2 , ⋯ , 𝑦(3)𝑆 } , and the reconstructed or predicted outcomes are {�̂�(3)1 , �̂�(3)2 , ⋯ , �̂�(3)𝑆 } . The 561 

corresponding 𝑅2 and 𝑃𝐶𝐶 values are calculated as: 562 

𝑅2 = 1 − ∑ (𝑦(3)𝐼 − �̂�(3)𝐼 )2𝑆𝐼=1∑ (𝑦(3)𝐼 − �̅�(3))2𝑆𝐼=1  563 

𝑃𝐶𝐶 = ∑ (𝑦(3)𝐼 − �̅�(3))(�̂�(3)𝐼 − �̅̂�(3))𝑆𝐼=1√∑ (𝑦(3)𝐼 − �̅�(3))2𝑆𝐼=1 √∑ (�̂�(3)𝐼 − �̅̂�(3))2𝑆𝐼=1  564 

where �̅�(3) = ∑ 𝑦(3)𝐼𝑆𝐼=1  and �̅̂�(3) = ∑ �̂�(3)𝐼𝑆𝐼=1 . 565 

 566 

Assessment of alternative methods. We conducted a comparative evaluation of STAIR against 567 

other alignment methods, including STAligner, Stitch3D, PRECAST, GraphST, and PASTE. In our 568 

assessment, we employed the default parameters for all methods unless specific parameters were 569 

outlined in the original text or tutorial. 570 

 571 

STAligner. STAligner integrates ST data across different conditions, technologies, and devel572 

opmental stages. It employs STAGATE and triplet loss to integrate the ST datasets until b573 

atch-corrected embeddings are generated. It further considers shared spatial domain and M574 

NNs identified by STAligner as corresponding pairs to guide the 2D alignment. We downl575 



oaded the package from https://github.com/zhoux85/STAligner, and ran STAligner following 576 

its tutorial https://staligner.readthedocs.io/en/latest/index.html. 577 

 578 

STitch3D. STitch3D first unified 3D spatial coordinates for spots using ICP or PASTE, followed by 579 

graph construction based on 3D coordinates. It performed spatial embedding learning and 580 

integration by graph attention network and slice- and gene-specific parameters. We downloaded the 581 

package from https://github.com/YangLabHKUST/STitch3D, and ran STitch3D following 582 

https://stitch3d-tutorial.readthedocs.io/en/latest/tutorials/index.html. Given the requirement for 583 

scRNA-seq datasets from the same tissue, we utilized single cell DLPFC and HER2+ breast cancer 584 

data accessed at the Gene Expression Omnibus (GEO) under the accession code GSE144136 and 585 

GSE176078, respectively. 586 

 587 

PRECAST. PRECAST is a probabilistic method for spatial embedding learning, clustering, and 588 

alignment. We downloaded the R package from https://github.com/feiyoung/PRECAST/, and ran 589 

PRECAST following its tutorial https://feiyoung.github.io/PRECAST/index.html 590 

 591 

PASTE. PASTE provides the flexibility to align two slices either through pairwise alignment or to 592 

simultaneously align multiple slices using center alignment. We opted for pairwise alignment in our 593 

testing, as other approaches also employ pairwise processes. In pairwise slice alignment, it aims to 594 

find the best possible way to connect spots in one slice with spots in another slice, followed by 595 

constructing a stacked 3D alignment of a tissue. The connection, denoted as 𝛱, is chosen to reduce 596 

both the differences in gene expression patterns between connected spots from different slices and 597 

the differences in physical distances between connected spots within the same slice. Parameter 𝛼 598 

was used to balance these two differences, and we set its default value of 𝛼 = 0.1 in our test. We 599 

download the package from https://github.com/raphael-group/paste/tree/main, and ran PASTE 600 

following https://github.com/raphael-group/paste/tree/main/docs/source/notebooks.  601 

 602 

https://github.com/zhoux85/STAligner
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Data availability 603 

Visium DLPFC dataset can be accessed from the spatialLIBD package http:://spatial.libd.or604 

g/spatialLIBD. Olfactory bulb dataset sequenced by Stereo-seq is available at https://github.605 

com/JinmiaoChenLab/SEDR_analyses. Olfactory bulb dataset sequenced by Slide-seqV2 is t606 

he Puck_200127_15 data in https://singlecell.broadinstitute.org/. MERFISH hypothalamic pre607 

optic region data is downloaded from https://github.com/ZhuangLab/MERFISH_analysis. Dat608 

aset of ST brain slices is available at http://molecularatlas.org/, and the Visium brain data 609 

aligned to them is downloaded from https://www.10xgenomics.com/resources/datasets/mouse-610 

brain-coronal-section-1-ffpe-2-standard. HER2+ breast cancer ST dataset is available at http611 

s://doi.org/10.5281/zenodo.4751624, and single cell data is accessed at GEO under the acce612 

ssion code GSE176078. 613 

 614 

Code availability 615 

The STAIR algorithm is implemented and provided as a pip installable Python package which is 616 

available on GitHub https://github.com/yuyuanyuana/STAIR. All scripts used to reproduce all the 617 

analyses are also available at the same website. 618 
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Figures 642 

 643 

 644 

Fig. 1. Overview of STAIR framework. (A) STAIR processes multiple ST slices by utilizing an 645 

autoencoder to compress the expression matrices of each slice, resulting in integrated expression 646 

features. Subsequently, STAIR-Emb takes the expression features and the 2D coordinates of each 647 

slice as input, employing a heterogeneous graph attention network to learn integrated spatial features. 648 

Finally, STAIR-Loc utilizes these spatial features to establish the initial alignment of spatial 649 



coordinates, followed by refining the alignment further by incorporating boundary points of slices 650 

and their respective domains. (B) De novo reconstruction of 3D atlas without prior knowledge about 651 

physical location. STAIR-Emb learns integrated spatial features and establishes high-order semantic 652 

relationships between slices, transforming them into distance matrices. Next, minimum spanning 653 

trees (MST) reconstruct relative positional relationships, guiding sequential spatial alignment. (C) 654 

Seamlessly integrating new slices into an existing 3D atlas. STAIR-Emb integrates spatial features 655 

of the new slice with the 3D atlas, followed by predicting the new slice's z-axis location and aligning 656 

its 2D coordinates (x- and y-axis) with the 3D atlas using STAIR-Loc. 657 

 658 

 659 



 660 

Fig. 2. STAIR effectively integrates heterogeneous spatial transcriptomics data. (A) Ground-661 

truth segmentation of manually annotated regions in 12 DLPFC sections. (B) STAIR’s spatial 662 

domain identification based on the 4 DLPFC slices for each sample. (C) Boxplots of adjusted rand 663 

index (ARI) scores of the four methods applied to the 4 DLPFC slices of each sample and to the 664 



total 12 slices of the three samples. In the boxplot, the center line denotes the median, box limits 665 

denote the upper and lower quartiles, and whiskers denote the 1.5 × interquartile range. (D) STAIR’s 666 

spatial domain identification based on the 12 DLPFC slices. (E) Integrative spatial regions 667 

identification of Stereo-seq (left) and Slide-seqV2 (right) mouse olfactory bulb data using STAIR, 668 

STAligner and PRECAST. (F) UMAPs derived from spatial embedding of STAIR, STAligner and 669 

PRECAST, with colors determined by the spatial regions they identify. (G) UMAPs derived from 670 

spatial embedding of STAIR, STAligner and PRECAST, with colors determined by the dataset to 671 

which the spot belongs. 672 

  673 



 674 

 675 

Fig. 3. Precise alignment of 2D coordinates by STAIR. (A) Schematic diagram of spatial position 676 

alignment. 2D coordinates in the first slice were fixed, and the remaining 11 slices were randomly 677 

rotated and translated. STAIR, PASTE, and STitch3D were employed to align the spatial 678 

coordinates of the rotated data. (B) Results of 2D spatial alignment using STAIR, STitch3D and 679 

PASTE. (C) Boxplots show the rotation errors of each method. In the boxplot, the center line denotes 680 

the median, box limits denote the upper and lower quartiles, and whiskers denote the 1.5 × 681 

interquartile range. (D) Boxplots show the translation errors of each method. In the boxplot, the 682 

center line denotes the median, box limits denote the upper and lower quartiles, and whiskers denote 683 

the 1.5 × interquartile range. 684 

 685 



 686 

Fig. 4. STAIR constructs de novo 3D atlas for the hypothalamic preoptic region and the mouse 687 

brain. (A) Diagram depicting the de novo 3D atlas reconstruction based on 12 MERFISH slices in 688 

the hypothalamic preoptic region. We acquired slice-level attention scores by STAIR-Emb. 689 

Subsequently, these attention scores were used for reconstructing distances along the parallel 690 

direction of the slices. Finally, STAIR-Loc was employed to align the 2D coordinates guided by 691 

inter-slice distance. (B) Scatterplot showing the correlation between pairwise attention scores and 692 

physical distance between slices, with a Spearman correlation coefficient of -0.88. (C) Comparing 693 

reconstructed and actual physical coordinates in z-axis reveals a perfect correlation, with both the 694 



Pearson correlation coefficient and determination coefficient of 1. The reconstructed coordinates 695 

are proportionally scaled to match the dimensions of the real physical coordinates. (D) Visualization 696 

of ground truth 3D coordinates, colored by spatial domains. (E) Left: Distribution of 40 coronal 697 

sections generated by the ST platform used to generate the atlas, adapted from the Ortiz’s work 8. 698 

Middle: Heatmap of attention scores across 40 slices in the of ST mouse brain data. Right: 699 

Visualization of de novo reconstructed 3D coordinates, colored by spatial domains. (F) UMAP 700 

visualization generated by spatial embeddings of STAIR, colored by original samples (left) and 701 

domains (right). (G) Visualization of de novo reconstructed 3D coordinates, colored by spatial 702 

domains (top) and their corresponding marker genes (bottom). 703 

  704 



 705 

 706 

Fig. 5. De novo 3D reconstruction and analysis of HER2+ breast cancer slices. (A) Annotations 707 

of slice H1 in the original study31 into six distinct categories: invasive cancer (red), adipose tissue 708 

(cyan), connective tissue (blue), breast glands (green), in situ cancer (orange) and immune infiltrates 709 

(yellow). (B) 2D spatial visualization shows the domains identified by STAIR in slice H1. That of 710 

the other two slices are displayed in Fig. S6B. (C) Visualization of de novo reconstructed 3D 711 

coordinates, colored by spatial domains. (D) Pseudo-time of each spot inferred by Monocle3 based 712 

on spatial embedding from STAIR. (E) Heatmap displaying genes with expression changes along 713 

the Monocle-derived pseudo-time, with spots ordered by pseudo-time. (F) Boxplot shows the 714 

pseudo-time of the spots in in situ cancer-1 (left) and invasive cancer (right) for each slice. In the 715 

boxplot, the center line denotes the median, box limits denote the upper and lower quartiles, and 716 

whiskers denote the 1.5 × interquartile range. 717 



 718 

Fig. 6. Assimilating new sections into a reference atlas. (A) Heatmap depicting attention scores 719 

among 41 mouse brain slices, including 40 slices of the reference atlas from the ST platform, along 720 

with an additional slice generated from the Visium platform. (B) UMAP visualization of spatial 721 

embedding generated by STAIR, with colors indicating the respective sample of origin. (C) 722 

Visualization of the unified three-dimensional space after aligning the coordinates of the Visium 723 

slice with the 3D atlas. Spots from the Visium slice and ST slices are shown in red and gray 724 

respectively. (D) Spatial visualization of the Visium slice (left) and the ST slice (right) closest to 725 

Visium slice, with colors indicating the anatomical regions of the first (top) and the second (bottom) 726 

levels. (E) UMAP visualization of spatial embedding generated by STAIR, with colors indicating 727 

the anatomical regions of the first (top) and second (bottom) levels. (F) Spatial visualization of 728 

known regional marker genes. 729 
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