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A B S T R A C T

Deep learning shows promise for medical image segmentation but suffers performance declines when applied to
diverse healthcare sites due to data discrepancies among the different sites. Translating deep learning models to
new clinical environments is challenging, especially when the original source data used for training is unavai-
lable due to privacy restrictions. Source-free domain adaptation (SFDA) aims to adapt models to new unlabeled
target domains without requiring access to the original source data. However, existing SFDA methods face
challenges such as error propagation, misalignment of visual and structural features, and inability to preserve
source knowledge. This paper introduces Continual Learning Multi-Scale domain adaptation (CLMS), an end-to-
end SFDA framework integrating multi-scale reconstruction, continual learning, and style alignment to bridge
domain gaps across medical sites using only unlabeled target data or publicly available data. Compared to the
current state-of-the-art methods, CLMS consistently and significantly achieved top performance for different
tasks, including prostate MRI segmentation (improved Dice of 10.87 %), colonoscopy polyp segmentation
(improved Dice of 17.73 %), and plus disease classification from retinal images (improved AUC of 11.19 %).
Crucially, CLMS preserved source knowledge for all the tasks, avoiding catastrophic forgetting. CLMS demon-
strates a promising solution for translating deep learning models to new clinical imaging domains towards safe,
reliable deployment across diverse healthcare settings.

1. Introduction

Deep learning has made remarkable progress in medical image
analysis such as lesion detection, organ segmentation, and disease
classification (Topol, 2019). However, the integration of deep learning
models into clinical settings faces a major hurdle: the degradation in
model performance when applied to medical imaging data across
different healthcare sites (Wynants et al., 2020; Roberts et al., 2021; De
Fauw et al., 2018). This arises due to variations in scanning protocols,
imaging devices, patient populations, and technician proficiency across
the sites. Consequently, discrepancies emerge between the source data,
where the model was trained on, and the target data, where the model
was applied to, which is known as domain shift (Zhang et al., 2020; Ju
et al., 2021; Yasaka and Abe, 2018). Moreover, privacy restrictions often
preclude access to the source data, exacerbating the challenge of

reconciling domain differences (Dayan et al., 2021). One solution is to
use transfer learning, which adapts models to the target data in the
presence of labels for the target data (Kora et al., 2022). However,
manual labeling is frequently infeasible, particularly for tasks such as
segmentation whose labeling is labor-intensive. Therefore, domain shift
persists as a central challenge in translating state-of-the-art deep
learning models to varied clinical settings in practice.

Source-free domain adaptation (SFDA) adapts source models to
target domains relying solely on unlabeled target data, without labor-
intensive labelling and source data (Li et al., 2024). Common SFDA
methods include image-level SFDA and feature-level SFDA (Li et al.,
2024). Image-level SFDA generates virtual source domain images uti-
lizing the domain-related features of the source model trained by source
data to reconcile domain differences (Zhou et al., 2022; Hu et al., 2022;
Wang et al., 2023). Feature-level SFDA involves image information
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alignment methods and self-training methods. Image information
alignment methods encode target images to a source-consistent
embedding to be recognized by the source model, usually via align-
ment to the batch normalization (BN) layers of the source model (Hong
et al., 2022; Ye et al., 2022; Yu et al., 2023). Self-training methods
fine-tune the source model by the target data through generating
pseudo-labels, entropy minimization, or contrastive learning (Hong
et al., 2022; Bateson et al., 2022; Liu et al., 2023; Kondo, 2022).

Although existing SFDA methods have made great progress in
reducing domain shift, key challenges remain. Image-level SFDA may
generate fake source images that resemble real source data but contain
discrepancies, leading to errors that accumulate over training (Zhou
et al., 2022). For feature-level SFDA, image information alignment
methods primarily focus on low-level visual differences (Yu et al., 2023;
Stan and Rostami, 2021). Consequently, these methods lack the selec-
tivity required to map invariant morphological structures while simul-
taneously adapting the visual style, thereby risking misalignment issues
(Hong et al., 2022; Yu et al., 2023). Hence, it often used in-conjunction
with self-training methods to constrain the structural feature learning.
Self-training methods can produce ambiguous outputs arising from the
uncertainty of source model predictions for target domain data, such as
incorrectly high-confidence samples (Li et al., 2024; Li et al., 2023).
Although many studies focus on improving the confidence of source
model predictions, avoiding errors introduced by incorrect predictions is
infeasible due to the inherent uncertainty and potential inaccuracies of
any source model applied to unlabeled target domain data (Wang et al.,
2023; Yang et al., 2022; Cai et al., 2023). Moreover, existing methods
typically involve a combination of approaches executed in multiple
steps, leading to error propagation throughout the training process (Yu
et al., 2023; Li et al., 2023; Yang et al., 2022). Adding to these chal-
lenges, retraining deep learning models on new target data can lead to
catastrophic forgetting of source knowledge (Pianykh et al., 2020; Per-
konigg et al., 2021), an effect often overlooked by the current SFDA
methods. The risk of forgetting important morphological features during
this process poses a risk to the performance of target applications.
Therefore, there is a pressing need for more advanced SFDA approaches
that can selectively reconcile domain gaps while retaining anatomical
knowledge.

Here, we introduce CLMS, an end-to-end source-free domain adap-
tation solution by integrating multi-scale image reconstruction,
continual learning, and style feature alignment. The key novelty of
CLMS lies in its ability to map invariant morphological structures and
preserve important anatomical knowledge, while simultaneously
adapting the visual style by disentangling low-level visual and high-level
structural features through the interplay of these components. Multi-
scale reconstruction maps target images into a canonical form, estab-
lishing structural and visual feature mappings across scales; continual
learning finetunes the source model through a replay-based approach
(Wang et al., 2024), retaining high-level structural representations by
transforming them into the canonical form using these mappings, while
also augmenting target feature responsiveness; and style alignment
constrains the canonical form’s low-level visual representations to the
source style. Together with joint end-to-end optimization, CLMS is
positioned to effectively adapt models without risky pseudo-labels or
error propagation issues. We compared CLMS to the state-of-the-art
approaches using diverse multimodal datasets, including MRI, colo-
noscopy, and retinal images. CLMS consistently achieved the top per-
formance and demonstrated robustness in adapting models to diverse
medical imaging domains without catastrophic forgetting. Notably,
CLMS demonstrated its ability to adapt segmentation models while
retaining morphological features critical for subsequent clinical classi-
fication tasks like Plus disease diagnosis in retinal images. A compre-
hensive benchmark underscored CLMS’s potential to transform model
deployment in clinical settings by effectively bridging domain gaps and
advancing deep learning in medical imaging and healthcare.

2. Related work

Domain shift problem can occur in medical segmentation across
modalities, such as MRI (Guan et al., 2021), colonoscopy (Liu et al.,
2021), fundus imaging (Wang et al., 2020), CT (Dong et al., 2022), X-ray
(Sanchez et al., 2022) and among others. This issue may lead to diag-
nostic and analytical errors, thereby affecting patient treatment and
diagnostic outcomes.

2.1. Unsupervised domain adaptation

Unsupervised domain adaptation (UDA) adapts knowledge from
labeled source data to unlabeled target domains. Recent UDA ap-
proaches can be categorized into image-level and feature-level adapta-
tion. Image-level UDA translates the image style between source and
target domains to reduce style disparities (Zhu et al., 2017; Chen et al.,
2019; Palladino et al., 2020), with cycle-consistent generative adver-
sarial networks (CycleGAN) a common practice in this category
(Palladino et al., 2020). Feature-level UDA focuses on learning
domain-invariant feature representations based on the premise that
domain gaps exist more in low-level characteristics (e.g., intensity
values) than high-level traits (e.g., anatomical structures) (Dou et al.,
2018; Tran et al., 2019; Tzeng et al., 2017). These methods align
high-level features in later convolutional neural network (CNN) layers
while fine-tuning earlier layers for low-level target adaptation (Yu et al.,
2022). However, focusing solely on low or high-level features may lead
to suboptimal adaptation as they are hierarchically composed in the
image. Simultaneous image and feature adaptation has been proposed
(Chen et al., 2019), but image-level prioritizes low-level features, while
feature-level struggles to differentiate low/high-level features, poten-
tially causing misalignment and error propagation (Kumari and Singh,
2024). Importantly, most UDA methods require access to both source
and target data, which is often infeasible in medical domains due to data
privacy restrictions preventing source data sharing.

2.2. Source free domain adaptation

The advantage of SFDA over UDA is the ability to adapt knowledge
from labeled source data to unlabeled target domains without requiring
access to the actual source data. Similar to UDA, existing SFDA methods
can be broadly categorized into image-level and feature-level adapta-
tion. Image-level SFDA aims to generate synthetic source-like image
data, which can then be used with standard UDA techniques (Fang et al.,
2024). A common approach is using Fourier transforms to stylize target
domain images to resemble the source domain appearance (Wang et al.,
2023; Yang et al., 2022). Feature-level SFDA focuses on learning
domain-invariant features through techniques like feature alignment
and self-training. Feature alignment synchronizes the feature distribu-
tions or prototypes between source and target models (Yu et al., 2023;
Fang et al., 2024). Self-training constrains high-level semantics using
pseudo-labeling (Wang et al., 2023; Yu et al., 2023; Yang et al., 2022),
self-supervision (Li et al., 2023), or entropy minimization (Hong et al.,
2022). SFDA faces challenges similar to UDA. Image-level SFDA strug-
gles to adapt high-level semantics, often requiring combination with
feature-level SFDA (Wang et al., 2023; Yang et al., 2022). Meanwhile,
feature alignment methods has difficulty disentangling low and
high-level features, necessitating self-training methods (Yu et al., 2023).
But, self-training methods can produce incorrect pseudo-labels and error
propagation when applying the source model to the unlabeled target
data (Li et al., 2024; Fang et al., 2024; Luo et al., 2024; Cao et al., 2024).
Several studies tried to improve prediction confidence through imple-
menting false label filtering mechanism to reject unreliable pseudo la-
bels (Yu et al., 2023; Yang et al., 2022) and introducing intra-class level
threshold to select the voxels with intra-class confidence (Wang et al.,
2023; Cai et al., 2023). Additionally, the inability to guarantee the
retention of high-level semantic features from the source domain,
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coupled with the possibility of crucial features from the source domain
being discarded or overlooked during adaptation, can lead to cata-
strophic forgetting issues.

2.3. Continual learning

To address the catastrophic forgetting problem, continual learning
can be categorized into five types: regularization-based, replay-based,
optimization-based, representation-based, and architecture-based
methods (Wang et al., 2024). The first four assume new and old tasks
share high-level semantics, allowing fine-tuning while retaining old
knowledge. For instance, regularization-based approaches constrain
parameter changes based on importance to old tasks (Ritter et al., 2018;
Schwarz et al., 2018; Rebuffi et al., 2017) or using knowledge distilla-
tion (Dhar et al., 2019). Replay-based approaches approximate old data
distributions via buffered (Lopez-Paz and Ranzato, 2017) or generated
(Shin et al., 2017; Wu et al., 2018) old training samples.
Optimization-based approaches limit direction of gradient updates,
typically at orthogonal to the previous input space (Chaudhry et al.,
2018; Farajtabar et al., 2020). Representation-based approaches en-
hances generalizability through self-supervision (Cha et al., 2021) or
pre-training (Mehta et al., 2023; Ramasesh et al., 2021). In contrast,
architecture-based methods assume the new task introduces novel
high-level semantics (Rusu et al., 2016; Mallya et al., 2018; Ebrahimi
et al., 2020; Li and Hoiem, 2018). Hence, these methods construct new
model components by reusing frozen features from the old task model
and dividing the new model into shared and task-dedicated sections.
While domain adaptation in medical imaging can safely assume
consistent high-level anatomical structures cross domains, we utilize a
replay-based continual learning approach to prevent catastrophic
forgetting of the source domain when adapting to the target.

3. Methods

We introduced CLMS, a solution integrating multi-scale image
reconstruction, continual learning, and style feature alignment (Fig. 1).
This framework, utilizing solely unlabeled data from the target domain
or publicly available data, not only enhanced the model’s performance
in the target domain but also ensured the preservation of its performance
in the source domain.

CLMS enables end-to-end adaptation of a source model to target
domain images through a multi-stage process that includes multi-scale
reconstruction, continual learning, and style feature alignment. The
multi-scale reconstruction module maps target domain images into a
canonical form and then reconstructs them back to the target domain.
This process establishes a transformation of both high-level structural
and low-level visual features across different scales between the target
domain and the canonical form (Fig. 1A). Importantly, the reconstructed
images remain in the target domain, preserving detailed information
while providing a bridge to the canonical representation. The continual
learning module finetunes a clone of the source model (clone model)
using a replay approach (Fig. 1B). It enforces consistency between the
source model’s responses to the target images in the original and
reconstructed forms. This approach offers two key advantages: (a) since
the images are in the same domain, finetuning the clone model doesn’t
introduce the incorrect pseudo-label problem that could occur if fine-
tuning on the canonical form, (b) the consistency of responses helps
retain high-level anatomical representations transformed into the ca-
nonical form via the target-canonical mapping, while also augmenting
model responsiveness to target features. Furthermore, maintaining
prediction consistency on an augmented public dataset further retains
representations and reinforces responsiveness (Fig. 1C), expanding the
model’s response range without propagation errors. The style feature
alignment module constrains the low-level visual representations of the

Fig. 1. | Overview of the architecture of CLMS. (A) Multi-scale image reconstruction module captures both global and local features of the target domain images,
fusing information across scales to enhance local details in the reconstructed images. Continual learning module simulates source domain response via (B) the
reconstructed images in the target domain, and (C) publicly available data for augmentation. This module allows the clone model to learn more accurate source-
target difference while preserving the anatomical knowledge. (D) Style feature alignment module adjusts the style representations of canonical form images to
match the style of the source image. (E) Inference of CLMS transforms the target data into the canonical form to be processed by the downstream models. Ab-
breviations: t: target domain; c: canonical form; r: reconstruction; f: whole-level; p: patch-level; aug: augmentation; μFM and σFM represent the mean and standard
deviation of the batch normalization layer of the feature maps computed using the canonical image xc

f ; μSM and σSM denote the running mean and the running
standard deviation of the batch normalization layer of the source model.
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canonical form to be consistent with the source domain style (Fig. 1D).
This is achieved by aligning the features to the batch normalization (BN)
layers of the source model. Importantly, this alignment is performed on
the canonical representation to prevent domain collapse that could
occur if finetuning on the reconstructed images. During the inference,
CLMS transforms the target data into the canonical form to be processed
by the downstream models (Fig. 1E). This established a novel approach
that interleaves multi-scale reconstruction, style feature alignment, and
continual learning to disentangle low-level visual and high-level

anatomical representations, thus ensuring model robustness and
adaptability across different medical environments.

3.1. Multi-scale image reconstruction module

The primary goal of this module was to transform target domain
images into a canonical form through an encoder-decoder generative
model while retaining both global and local image information through
whole-level and patch-level image reconstructions. Patch-level images
were derived from the whole image through random cropping.

For patch-level reconstruction, a generator Gt→ctransforms a patched
image xt

p into a canonical form image xc
p. The generator Gt→c is

formulated as follows:

xc
p =

(
Gt→c

(
xt

p

)
+ xt

p

)/
2.

Then, another generator Gc→r of the same type as Gt→c transforms
xc

p into the reconstruction image xr
p and the generatorGc→r is formulated

as follows:

xr
p =

(
Gc→r

(
xc

p

)
+ xc

p

)/
2.

The image xr
p is constrained by the reconstruction loss Lrebuild p as

follows:

Lrebuild p =

⃒
⃒
⃒

⃒
⃒
⃒xr

p − xt
p

⃒
⃒
⃒

⃒
⃒
⃒
1
,

where || ⋅ ||1 represents L1 norm.
In addition, the generator Gc→r processes xt

p into image xrʹ
p , and the

L1 norm between images xt
p and xrʹ

p , denoted as the identity mapping loss
Lidentity , is formulated as:

Lidentity =

⃒
⃒
⃒xrʹ

p − xt
p

⃒
⃒
⃒|1.

For whole-level reconstruction, the generator Gt→c transforms a
target whole image xt

f to obtain the canonical form image xc
f , and then

the generator Gc→r transforms xc
f to obtain the reconstruction image xr

f .
Finally, the reconstruction loss at the whole-level, denoted as Lrebuild f , is
computed as follows:

Lrebuild f =

⃒
⃒
⃒xr

f − xt
f

⃒
⃒
⃒|1.

In addition, we proposed an improved total variation loss (TV Loss)

to constrain the quality of image xc
f for both spatial and channel aspects.

The spatial-level loss function Lsptial is defined as follows:

Lsptial =

sum
(⃒
⃒
⃒

((
xc

f − xt
f

)

h− 1,w
−
(
xc

f − xt
f

)

h,w

)
× hMaskh,w

⃒
⃒
⃒

)

sum
(
hMaskh,w

)

+

sum
(⃒
⃒
⃒

((
xc

f − xt
f

)

h,w− 1
−
(
xc

f − xt
f

)

h,w

)
× wMaskh,w

⃒
⃒
⃒

)

sum
(
wMaskh,w

) ,

where h and w represent the image coordinates along the y-axis and x-
axis, respectively, where sum denotes the matrix summation function,
and | ⋅ | denote the absolute value.

The channel-level loss function Lchannel is formulated as:

Lchannel =
sum

(⃒
⃒
⃒

((
xc

f r − xt
f r
)

−
(
xc

f g − xt
f g
) )

× rgMask
⃒
⃒
⃒

)

sum(rgMask)

+
sum

(⃒
⃒
⃒

((
xc

f g − xt
f g
)

−
(
xc

f b − xt
f b
) )

× gbMask
⃒
⃒
⃒

)

sum(gbMask)

+
sum

(⃒
⃒
⃒

((
xc

f r − xt
f r
)

−
(
xc

f b − xt
f b
) )

× rbMask
⃒
⃒
⃒

)

sum(rbMask)
,

rgMask =

⎧
⎨

⎩

1 if
((

xt
f r − xt

f g
)
×
(
xc

f r − xc
f g
))

< 0

0 if
((

xt
f r − xt

f g
)
×
(
xc

f r − xc
f g
))

≥ 0
,

gbMask =

⎧
⎨

⎩

1 if
((

xt
f g − xt

f b
)
×
(
xc

f g − xc
f b
))

< 0

0 if
((

xt
f g − xt

f b
)
×
(
xc

f g − xc
f b
))

≥ 0
,

rbMask =

⎧
⎨

⎩

1 if
((

xt
f r − xt

f b
)
×
(
xc

f r − xc
f b
))

< 0

0 if
((

xt
f r − xt

f b
)
×
(
xc

f r − xc
f b
))

≥ 0
,

where xt
f r , xt

f g and xt
f b represent the R, G and B channels of image xt

f ,
respectively. Similarly, xc

f r, xc
f g and xc

f b represent the R, G and B chan-
nels of image xc

f ,respectively. The loss function Ltv is then:

Ltv = Lsptial × λsptial + Lchannel × λchannel ,

where λsptial and λchannel are scalar weights used to balance the spatial and
channel losses.

3.2. Continual learning module

Continual learning was formulated through two constraints: source
prediction consistency and data augmentation. Reconstruction predic-
tion consistency between source responses simulated by target images
and reconstructed images helped preserve key semantic features related
to the downstream analytical task while also retaining source domain
knowledge. Additionally, an augmented dataset leveraging diverse

hMaskh,w =

⎧
⎨

⎩

1 if
((

xt
f0 : h − 1,w − xt

f1 : h,w
)
×
(
xc

f0 : h − 1,w − xc
f1 : h,w

))
< 0

0 if
((

xt
f0 : h − 1,w − xt

f1 : h,w
)
×
(
xc

f0 : h − 1,w − xc
f1 : h,w

))
≥ 0

,

wMaskh,w =

⎧
⎨

⎩

1 if
((

xt
f h,0 : w − 1 − xt

f h,1 : w
)
×
(
xc

f h,0 : w − 1 − xc
f h,1 : w

))
< 0

0 if
((

xt
f h,0 : w − 1 − xt

f h,1 : w
)
×
(
xc

f h,0 : w − 1 − xc
f h,1 : w

))
≥ 0

,
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public medical images provided regularization to maintain performance
on the source domain. Together, reconstruction prediction consistency
and data augmentation constrained the image translation so that visu-
ally transformed images still contained crucial semantic content and
source knowledge needed for the analytical task.

3.2.1. Reconstruction prediction consistency
This module leverages the source model FSM to supervise the training

of a clone model FCM on the source domain prediction instead of target
domain prediction commonly used by previous SFDA methods. By
minimizing a consistency loss, Lconsistent, FCM learns to make predictions
consistent with the source knowledge contained in FSM.

For a target image group, xt, comprising whole-level image xt
f and

patch-level image xt
p, and the corresponding reconstructed image group

is xr. The model FCM is initialized with the weights of FSM. The param-
eters of FCM are updated during adaptation while the parameters of FSM

remain fixed. During adaptation, the steps are described as follows:

1. The soft pseudo-label of masks, yt, for source domain are obtained by
simulating the model FSM with the target image group xt.

2. The prediction masks, yr, are obtained by simulating the model FCM

using the image group xr.
3. Lconsistent enforces consistency between the outputs of FCM and FSM.

Generally, Lconsistent uses the binary cross-entropy loss function, FBCE,
but can employ the additional Dice loss function, FDICE, for further
improvement as given by:

Lconsistent = FBCE
(
yr , yt ) OR FBCE

(
yr , yt )

+ FDICE
(
yr , yt ), FBCE (x1, x2)

= − (x2 × log(x1)+ (1 − x2)× log(1 − x1)),

FDICE (x1, x2) = 1 −
2× sum(x1 × x2)

sum(x1) + sum(x2)
,

where log represents the natural logarithm.

3.2.2. Data augmentation
Given the limited target domain data and lack of diversity, this

module was used to expand and diversify the dataset.
For an augmentation image group, xaug, comprising whole-level

image xaug
f and patch-level image xaug

p . The data augmentation module
shares the same model, FCM, with the source prediction consistency
module. During adaptation, the steps are followed:

1. The soft pseudo-label of masks, ySM, for source domain are obtained
by simulating the model FSM with the target image group xaug.

2. The prediction masks, yCM, are obtained by simulating the model FCM

using the image group xaug.
3. An augmentation loss Laug enforces consistency between the outputs

of FCM and FSM. Generally, Laug uses FBCE but can employ an addi-
tional FDICE for further improvement as given by:

Laug = FBCE
(
yCM, ySM) OR FBCE

(
yCM, ySM)+ FDICE

(
yCM, ySM).

3.3. Style feature alignment module

The purpose of this module was to match the style of the canonical
form to the style of the source domain. Prior work had shown that batch
normalization layers in trained models capture statistics representing
the source style (Yang et al., 2022). We leveraged this by constraining
the batch normalization statistics of the canonical image, xc

f , to match

the statistics derived from the source model. Specifically, the Wasser-
stein distance Lwasserstein between those statistics is defined as:

Lwasserstein =
∑K

n=1

⃒
⃒
⃒
⃒μn

FM(t) − μn
SM

⃒
⃒
⃒
⃒
2 +

⃒
⃒
⃒
⃒σn

FM(t) − σn
SM

⃒
⃒
⃒
⃒
2 ,

μn
FM(t) = μn

BN × α + μn
FM(t − 1) × (1 − α),

σn
FM(t) = σn

BN × α + σn
FM(t − 1) × (1 − α),

where μn
BN and σn

BN represent the mean and standard deviation of the nth

batch normalization layer of the feature maps computed using the ca-
nonical image xc

f . t is current training iteration, t-1 is the previous
training iteration and α is a scalar weight to balance statistical values
between the iterations to calculate the running average, μn

FM(t) and
σn

FM(t). μn
SM and σn

SM denote the running mean and the running standard
deviation of the nth batch normalization layer of the source model, and
|| ⋅ ||2 represent the L2 norm. The summation by Lwasserstein is over the first
K layers most likely to capture low-level style information. By mini-
mizing this Wasserstein loss, the image generator was encouraged to
output canonical images with a style aligned to the source domain while
preserving target content.

3.4. Optimization summary

In each adaptation iteration, the target domain images are firstly
augmented by random flipping and the following sequential steps are
repeated until the pre-set number of training iterations are met:

1. Patch level image reconstruction to minimize the loss function
Lpatch, given by:

Lpatch = Lrebuild p × λrebuild p + Lidentity × λidentity,

Where λrebuild p and λidentity are scalar weights balancing the two loss
terms.

2. Whole level image reconstruction and image quality preservation
to minimize the loss function Lwhole, given by:

Lwhole = Lwassertein + Lrebuild f × λrebuild f + Ltv , where λrebuild f is a
scalar weight controlling the whole level image reconstruction.

3. Continual learning module to minimize the loss function LCM,
given by:

LCM = Lconsistent + Laug × λaug,

where λaug is a scalar weight balancing the two loss terms.

3.5. Experimental settings

3.5.1. Datasets
Prostate MRI dataset: three publicly available prostate MRI data-

sets were utilized in this study: NCI-ISBI13 dataset (Roberts et al., 2021),
I2CVB dataset (Yu et al., 2023) and PROMISE12 dataset (Stan and
Rostami, 2021) (Table S1). NCI-ISBI13 dataset contained 2 sites, I2CVB
dataset contained 1 site and PROMISE12 dataset contained 3 sites, for a
total of 6 distinct sites. The NCI-ISBI13 and I2CVB datasets served as the
source domain, comprising 3 sites total. The PROMISE12 dataset served
as the target domain, with each of its 3 sites adapted individually. For
each target domain site adaptation, the other 2 PROMISE12 sites were
used for augmentation. For all datasets, 80 % of cases were assigned to
training and 20 % to testing. All images were resized to 384× 384
resolution.

Colonoscopy Image dataset: three publicly available colonoscopy
video datasets were utilized in this study: CVC-ClinicDB (Vázquez et al.,
2017), ETIS-Larib (Silva et al., 2014; Chen et al., 2020) and HyperKvasir
(English 2020) (Table S2). The CVC-ClinicDB, ETIS-Larib and Hyper-
Kvasir served as source domain, target domain and augmentation
dataset, respectively. Videos were examined to ensure images from the
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same segment were designated for either training or testing. 80 % of the
colonoscopy images from each segment were used to comprise the
training set, while the remaining 20 % were held out for testing. All
images were resized to 384× 384 resolution.

Fundus image dataset: three private fundus image datasets were
collected from the following sites: Zhongshan Ophthalmic Center at Sun
Yat-sen University (ZOC), Guangdong Women and Children Hospital
Panyu Branch (PY), and Zhuhai Center for Maternal and Child Health-
care (OA) (Table S3). The PY dataset served as the source domain, the
ZOC dataset served as the target domain, and the OA dataset was used
for augmentation. All images were resized to a resolution of 512× 512
pixels. 146 ROP fundus images from ZOC dataset served as the test set;
the rest formed the training set. The test set were annotated with the
presence of Plus disease by two experienced ophthalmologists (with
over 10 years of experience) and reviewed by a clinical professor serving
as the reference standard diagnosis (RSD).

3.5.2. Implementation details

3.5.2.1. Prostate segmentation. Firstly, we trained a source domain
model FSM using the labeled source domain data from the prostate MRI
dataset. The source model was formulated based on DeepLab-v2 using a
ResNet-101 backbone. The parameters of source model were initialized
on ImageNet, and the training batch size was 24 for 150 epochs, using

the Adam optimizer with a learning rate of 1e-3.
In the adaptation stage, the weights of the FCM model was initialized

using the weights of the FSM model and the adaptation using CLMS was
based on the target domain dataset. The adaptation batch size was 4 for
50 epochs, using the Adam optimizer with a learning rate of 1e-4. Other
hyperparameters are shown in Table S4.

3.5.2.2. Polyp segmentation. Firstly, we trained a source domain model
FSM using labeled source domain data from the colonoscopy image
dataset. The source model was formulated based on DeepLab-v2 using a
ResNet-101 backbone. The parameters of source model were initialized
on ImageNet, and the training batch size was 24 for 150 epochs, using
the Adam optimizer with a learning rate of 1e-3.

In the adaptation stage, the weights of the FCM model was initialized
using the weights of the FSM model, and the adaptation using CLMS was
based on the target domain dataset and augmentation dataset. The
adaptation batch size was 4 for 100 epochs, using the Adam optimizer
with a learning rate of 1e-4. Other hyperparameters are shown in Table
S4.

3.5.2.3. Plus disease classification. Firstly, we trained a source domain
model FSM using pseudo-labeled source domain data from the fundus
image dataset. The source model was formulated based on a UNet-type
Retinal Segmentation Network ResUNet. The training batch size was 18

Fig. 2. | Experimental results on the prostate MRI datasets. (A) Demonstration of prostate segmentation from MRI that is critical for computer-aided diagnosis and
treatment planning in prostate cancer. (B) The prostate MRI datasets (see Table S1 for the details) exhibit clear appearance disparities. The comparison of the
performance of source-free domain adaptation methods on three target sites using three common segmentation metrics: Dice (C), AUPR (D), and IOU (E); the error
bar represents the standard error mean (SEM). Visualization of prostate segmentation on the target domain (F) and source domain (G).
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Table 1
| Benchmark results on prostate segmentation for target site 1.

* 1: SFDA methods in medical imaging; 2: SFDA methods in natural imaging.
The best and second-best performing results are highlighted with underlines below.

Table 2
| Benchmark results on prostate segmentation for target site 2.

* 1: SFDA methods in medical imaging; 2: SFDA methods in natural imaging.
The best and second-best performing results are highlighted with underlines below.
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for 30 epochs, using the Adam optimizer with a learning rate of 1e-3.
In the adaptation stage, the weights of the FCM model was initialized

using the weights of the FSM model and the adaptation using CLMS was
based on the target domain dataset and augmentation dataset. The
adaptation batch size was 4 for 150 epochs, using the Adam optimizer
with a learning rate of 1e-4. Other hyperparameters are shown in Table
S4.

3.5.3. Benchmarking methods
We compared CLMS to several state-of-the-art SFDA methods,

encompassing approaches applied in both medical and natural imaging
domains. In the medical imaging category, we evaluated Fourier Style
Mining (FSM), a two-stage framework involving image-level and self-
training methods (Yang et al., 2022); Prototype-Anchored Feature
Alignment and Contrastive Learning (PAFA-CL), which incorporates
image information alignment and self-training methods (Yu et al.,
2023); and Target-Specific Fine-tuning (TSF), a self-supervised based
method (Li et al., 2023). In the natural imaging category, we evaluated
Importance-Aware and Prototype-Contrast (IAPC) (Cao et al., 2024) and
CROss domain Teacher-Student learning framework (CROTS) (Luo
et al., 2024), both of which are based on self-supervised approaches.

Furthermore, to explore the effectiveness of continual learning in the
SFDA scenario, we compared CLMS with established continual learning
methods, specifically Learning without Forgetting (LwF) (Li and Hoiem,
2018) and Incremental Classifier and Representation Learning (iCaRL)
(Rebuffi et al., 2017). Unlike SFDA approaches, these continual learning
methods typically require more than just target domain data. Due to this
requirement, we limited our comparison to MR and colonoscopy data-
sets, excluding the fundus image dataset which lacks target domain

segmentation labels. We included these comparisons to provide a
broader perspective on adaptation strategies and to illustrate the per-
formance of continual learning paradigms in this context.

To evaluate performance, we used various metrics for segmentation
and classification tasks. For segmentation, we calculated Dice score,
Area Under the Precision-Recall curve (AUPR), Intersection over Union
(IOU), sensitivity, and specificity. For classification, we computed Area
Under the Receiver Operating Characteristic curve (AUC), weighted F1
score, type I error, type II error, sensitivity, and specificity. Detailed
explanations of these metrics can be found in the supplementary section
S2 Metrics.

3.5.4. Statistics analysis
All statistics analysis was using Wilcoxon-test by python package

Scipy (v.1.7.3) and SPSS Statistics (R26.0.0.0). All plots were generated
using python package brokenaxes (v.0.5.0) and matplotlib (v.3.5.3).

3.5.5. Ablation analysis
We conducted ablation analysis on the prostate MRI dataset and

colonoscopy image dataset. For each of the target sites, we assessed the
impact of removing modules on the performance of the CLMS frame-
work. Each time, one of the modules, including multi-scale image
reconstruction, style feature alignment, reconstruction prediction con-
sistency, data augmentation and continual learning, was removed and
the same optimization process was applied as previous demonstrated.

3.5.6. Architecture analysis
We conducted an architectural analysis of CLMS using prostate MRI

and colonoscopy image datasets to investigate the crucial interplay

Table 3
| Benchmark results on prostate segmentation for target site 3.

* 1: SFDA methods in medical imaging; 2: SFDA methods in natural imaging.
The best and second-best performing results are highlighted with underlines below.
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between its key components. Our analysis focused on two critical
modifications:

(1) In the continual learning module, we changed the input to the
FCM model from the reconstructed target image to the canonical
form (Fig. S1). This alteration tests the importance of maintaining
target domain characteristics during finetuning, as the recon-
structed target image preserves detailed target information while
the canonical form represents a more source-like representation.

(2) In the style feature alignment module, we switched the input
from the canonical form to the reconstructed target image (Fig.
S2). This change examines the impact of aligning low-level visual
features directly on target-like images rather than on the source-
like canonical form.

4. Results

4.1. Evaluation of CLMS in prostate segmentation on MRI

Prostate cancer ranked among the most prevalent male malig-
nancies, with MRI serving as a primary diagnostic tool renowned for its
heightened detectability (Vente et al., 2021). The accurate segmentation
of the prostate from MRI images facilitates the detection, treatment
planning, and therapeutic evaluation of this form of cancer (Khan et al.,
2021) (Fig. 2A). However, considerable variations in MRI intensities
across different medical centers, stemming from diverse scanning pro-
tocols, posed a notable obstacle. These disparities rendered the existing
models less adaptable to domain shift that alter the image appearance of
prostate boundaries and tissue heterogeneity, further compounded by
the absence of labeled data for fine-tuning.

We employed prostate T2-weighted MRI datasets sourced from six
different medical sites, each characterized by distinct scanning protocols
and devices (Table S1) (Liu et al., 2020). We used images from three sites
as source sites and the other sites as target sites. Images from these
different sites displayed significant visual disparities, highlighting sub-
stantial style variations across domains (Fig. 2B). Compared to the im-
ages from the target domain, the source domain images had brighter
grayscale, larger visible tissue coverage, and higher contrast between
the prostate and surrounding tissues, accompanied by sporadic bright
speckles. Overall, these substantial discrepancies in quality and visuals
posed considerable challenges for model generalization.

We combined the source sites 1, 2, and 3, characterized by relatively
consistent data profiles, as the source domains for training a model ac-
cording to a previous study (Liu et al., 2020), a prostate segmentation
source model achieved average Dice score (Dice) of 90.85 % (95 % CI =
0.900–0.917). When applied to the target sites 1, 2 and 3, Dice decreased
to 76.51 % (95 % CI = 0.666–0.864; n = 43), 58.13 % (95 % CI =
0.483–0.679; n = 71), and 64.24 % (95 % CI = 0.527–0.758; n = 40),
respectively, showing a significant performance drop (Table 1–3).
Training models on datasets from three source sites, either individually
or collectively, also led to a noteworthy performance reduction on the
unseen target sites, despite the enhancement across the seen source sites
(Table S5). This observation suggested that while collective supervised
learning, such as federated learning (Dayan et al., 2021), could yield
excellent generalization across the domains within the training data
distributions, it encounters considerable performance degradation when
encountering with new, out-of-distribution data. Furthermore, bimodal
performances were observed, where the higher peak represented good
generalization to target data similar to source, while the lower peak
reflected poor generalization to dissimilar target data (Fig. S3A).

Fig. 3. | Experimental results on the colonoscopy dataset. (A) Demonstration of polyp segmentation from a colonoscopy image that is critical for early diagnosis and
treatment of colonoscopy cancer. (B) The colonoscopy image datasets (see Table S2 for the details) exhibit clear appearance disparities. (C) The comparison of the
performance of source-free domain adaptation methods on target sites using average dice, AUPR, and IOU; the error bar represents SEM. (D) Visualization of polyp
segmentation on the target domain and source domain.
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CLMS demonstrated superior segmentation performance compared
to its counterparts (Fig. 2C - 2E). Specifically, for the target site 1, CLMS
achieved the top performance in Dice, AUPR, IOU, sensitivity and
specificity (Fig. 2C and S4A, Table 1). Notably, CLMS attained the
highest Dice of 87.38 % (95 % CI = 0.826–0.922), representing a sig-
nificant improvement of 10.87 % over the source model (P < 0.001).
Furthermore, CLMS significantly outperformed FSM, PAFA-CL, TSF,
CROTS and IAPC by 4.39 % (P < 0.0001), 13.91 % (P < 0.0001), 8.66 %
(P < 0.0001), 16.75 % (P <0.0001) and 4.25 % (P < 0.01), respectively
(Fig. S4A and Table 1). Additionally, CLMS demonstrated a higher me-
dian and a narrower interquartile range of Dice, indicative of a more
stable and robust overall segmentation performance (Fig. S4A). For the
target site 2, CLMS achieved the top position for all the evaluation
metrics except specificity, securing the highest Dice of 80.78 % (95 % CI
= 0.759–0.857), surpassing the source model by 22.65 % (P < 0.0001),
and FSM, PAFA-CL, TSF, CROTS and IAPC by 12.48 % (P < 0.0001),
11.86 % (P < 0.0001), 12.75 % (P < 0.0001), 10.22 % (P < 0.0001) and
10.32 % (P < 0.0001), respectively (Fig. 2D and S4B, Table 2). For the
target site 3, CLMS achieved the top position for all evaluation metrics
except sensitivity, and secured the highest Dice of 86.13 % (95 % CI =
0.821–0.902), surpassing the source model by 21.89 % (P < 0.0001),
and FSM, PAFA-CL, TSF, CROTS and IAPC by 4.26 % (P < 0.01), 6.96 %
(P < 0.05), 1.96 %, 4.29 % and 4.44 %, respectively (Fig. 2E and S4C,
Table 3).

Moreover, CLMS effectively preserved model performance on the
source domain during adaptation, as shown in Tables 1-3. Specifically,
CLMS achieved Dice of 90.18 %, 86.75 % and 88.14 % on the target sites
1, 2 and 3, respectively. These results surpassed FSM, TSF, PAFA-CL,
CROTS and IAPC for all the target sites, except a tie with TSF on the
target site 1 and with IAPC on target sites 1 and 3. In addition, CLMSwas
the only approach that prevented median Dice reduction across the
target sites (Fig. S4). Further analysis uncovered while all the methods
improved on low dice images, which represented target images dis-
similar to source (Dice <0.75), CLMS was the top across all the target

sites. Notably, CLMS was the only method that maintained segmentation
accuracy on high Dice images, which represented target images similar
to source (Dice ≥ 0.75) (Fig. S5). Ideally, SFDA should improve both
peaks (Fig. S3B). However, the results demonstrated that existing SFDA
techniques boosted the lower peak by catastrophically interfering with
the higher peak during adaptation (Fig. S3C). This highlighted CLMS’s
dual capacity for preserving knowledge on source-consistent data while
adapting to novel target characteristics.

Unlike established SFDA methods discussed earlier, established
continual learning approaches successfully maintained performance on
the source domain during the adaptation, achieving Dice scores com-
parable to the source domain model (Tables 1–3). Notably, these
methods not only preserved but also improved performance on images
similar to the source domain (Dice ≥ 0.75) (Fig. S6), highlighting the
effectiveness of continual learning approaches in preventing cata-
strophic forgetting and promoting positive transfer.

While both CLMS and established continual learning approaches
demonstrated exceptional performance across multiple target domains,
CLMS achieved comparable results with significantly less information.
In the comparison across three target domains (Fig. S7, Table 1–3),
iCaRL outperformed CLMS in two sites, while CLMS excelled in one.
Specifically, for target domain 1, CLMS surpassed both LwF and iCaRL
across all metrics, achieving a Dice score 2.85 % higher than LwF and
5.06% higher than iCaRL. In target domain 2, CLMS again outperformed
LwF across all metrics, with a Dice score 10.19 % higher, and nearly
matched iCaRL’s performance with a Dice score only 0.05 % lower. In
target domain 3, CLMS’s Dice score was 1.05 % and 3.63 % lower than
LwF and iCaRL, respectively. Notably, CLMS attained these comparable
results using only unlabeled target images, whereas iCaRL required both
source images and target labels, and LwF utilized target labels. This stark
contrast in data requirements underscores CLMS’s superior effectiveness
in leveraging limited information compared to existing continual
learning methods.

The segmentation masks further demonstrated that CLMS generated

Table 4
| Benchmark results on polyp segmentation.

* 1: SFDA methods in medical imaging; 2: SFDA methods in natural imaging.
The best and second-best performing results are highlighted with underlines below.
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more accurate and clearer prostate segmentation against the ground
truth (Fig. 2F). In contrast, the other methods performed worse on all the
target sites, producing many false positive segmentations. On the other
hand, after adapting to the target sites, CLMS also precisely locate the
position of prostate on the source site while other methods misidentified
a significant amount of tissue around the intestinal prostate as prostate
(Fig. 2G). CLMS showcased superior and more robust segmentation
performance across all the three target domains (Fig. 2F) and the source
domain (Fig. 2G). These qualitative results further affirm the efficacy
and robustness of CLMS.

4.2. Evaluation of CLMS in polyp segmentation on colonoscopy images

Colorectal cancer (CRC) stands out as one of the most prevalent
adenocarcinomas, primarily manifesting in the colon or rectum, with
80–95 % of cases originating from adenomatous polyps (Alzahrani et al.,
2021). The most effective screening method for the early diagnosis and
treatment of CRC in clinical practice is colonoscopy examination, and
previous studies showed that the segmentation of colon polyps from
colonoscopy images using deep learning can assist clinicians in the early
detection of polyps (Biffi et al., 2022) (Fig. 3A). However, differences
across medical centers introduced significant variations in the color
distribution of colonoscopy images. These variations hindered the
ability of existing models to adapt to domain shift characterized by
markedly distinct image appearances.

We employed three colonoscopy video datasets, namely CVC-
ClinicDB (Vázquez et al., 2017), ETIS-Larib (Silva et al., 2014; Chen
et al., 2020), and HyperKvasir (English 2020) (Table S2). In this eval-
uation, the CVC-ClinicDB dataset, characterized by higher image quality
and a larger volume, was designated as the source domain, the
ETIS-Larib dataset as the target domain, and the HyperKvasir dataset
was employed for data augmentation because of its arbitrary order and

inability to be manually categorized according to video sequence.
Notable discrepancies were evident upon visual inspection of colonos-
copy images between the source and target domains (Fig. 3B). The
source images exhibited uneven illumination, containing overexposed
and underexposed areas. Overall color tone skewed yellow with lower
contrast, obscuring certain vascular details. In comparison, the target
images displayed more consistent lighting, a redder hue, and clearer
vessel and structural definition. Furthermore, while the polyp segmen-
tation model achieved Dice of 77.79 % on the source domain, Dice
declined markedly to 51.22 % (95 % CI = 0.436–0.588; n = 46) when
applied to the target data (Table 4). In summary, substantial domain
divergences existed in image quality and visual characteristics, pre-
senting challenges for direct generalization of models across diverse
colonoscopy image datasets.

Again, CLMS demonstrated superior colon polyp segmentation per-
formance on the target domain compared to its counterparts. Specif-
ically, CLMS achieved the highest scores across key metrics, including
Dice, AUPR, and IOU, and the second in sensitivity (Fig. 3C and Table 4).
CLMS attained top Dice of 68.95 % (95 % CI = 0.598–0.781; n = 46),
significantly improving 17.73 % (P < 0.0001) over the source model.
Furthermore, it surpassed FSM, PAFA-CL, TSF, CROTS, and IAPC by
significant improvements of 16.95 % (P < 0.0001), 11.22 % (P <

0.0001), 8.61 % (P < 0.001), 7.98 % (P < 0.001), and 6.57 % (P < 0.05),
respectively (Fig. 3C and S8, Table 4). Notably, CLMS even exceeded
supervised training on the target data alone (the target model) for Dice,
sensitivity, and specificity. This validated CLMS’s capacity to fuse cross-
domain knowledge and learn invariant feature representations for reli-
able generalization.

Similarly, CLMS effectively preserved source domain performance
during adaptation (Table 4). Specifically, compared to SFDA methods,
CLMS achieved a Dice of 76.38 %, close to the source model. This sur-
passed PAFA-CL, TSF, CROTS, and IAPC methods by significant

Fig. 4. | Experimental results on the retinal images dataset. (A) Demonstration of Plus disease diagnosis pipeline, involving exam retinal vascular morphology and
diagnosis Plus disease. (B) The retinal image dataset (see Table S3 for the details) exhibits clear appearance color disparities. The comparison of the performance of
source-free domain adaptation methods on the target site using ROC-area (C), weighted F1, type I error (0.05), and type II error (0.05) (D).
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improvements of 4.82 %, 4.59 %, 12.37%, and 6.95%, respectively, and
matched FSM. While all the methods, including CLMS, improved on
dissimilar, low Dice cases (Dice< 0.75), CLMS demonstrated the highest
gains (Fig. S9). Further analysis revealed CLMS as the sole approach
maintaining accuracy on high Dice images (Dice ≥ 0.75) (Fig. S9). This
again highlighted CLMS’s unique capacity to prevent catastrophic
forgetting of source knowledge, enabling robust cross-domain
generalization.

As expected, established continual learning methods all preserved
source domain performance during adaptation. Further analysis
revealed these methods maintained accuracy on images similar to the
source domain (Dice ≥ 0.75) (Fig. S10). These findings highlight
continual learning methods unique capacity to prevent catastrophic
forgetting of source knowledge while learning new information,
enabling robust cross-domain generalization.

CLMS exhibited exceptional performance across target domains
while requiring significantly less information than other established
continual learning methods. CLMS outperformed both LwF and iCaRL
across all metrics, with Dice scores improving by 6.98% (P< 0.001) and
8.89 % (P < 0.0001), respectively (Fig. S11, Table 4). Notably, CLMS
achieved these superior results using only unlabeled target images,
while other methods required additional labeled data. These outcomes
align with the findings from the MRI experiment, further confirming
CLMS’s remarkable effectiveness in leveraging limited information.

Visual inspection revealed key differences in segmentation quality
between CLMS and the other methods. On the target domain, CLMS
produced markedly more accurate and defined colon polyp boundaries,
while the other methods displayed errors, particularly false positives
(Fig. 3D). This adaptation performance affirmed CLMS’s ability to
mitigate domain gaps and learn transferable representations. On the
source domain, CLMS maintained strong segmentation fidelity, gener-
ating clearer predictions (Fig. 3D). Competitors exhibited degraded
output, indicating difficulty preserving source knowledge. These visual
validations spotlighted the advantage of CLMS for sensitive medical
image analysis, preserving detailed tissue patterns without target
overfitting.

4.3. Evaluation of CLMS in retinopathy of prematurity classification

Retinal diseases stand out as a leading cause of visual impairment
and blindness in children worldwide, with retinopathy of prematurity
(ROP) being a major contributor (Yildiz et al., 2020; Blencowe et al.,
2013). Symptoms include distorted peripheral vessels, fibrovascular
growth, and neovascularization. Plus disease represents widening and
tortuosity of retinal vessels, necessitating urgent treatment when
observed (Gopal et al., 1995). Thus, early Plus disease identification can
prevent ROP progression and vision loss. Clinically, diagnosis relies on
ophthalmologists manually examining wide-field retinal images

Table 5
| Comparison of the SFDA methods on plus classification.

* 1: SFDA methods in medical imaging; 2: SFDA methods in natural imaging.
The best and second-best performing results are highlighted with underlines below.

Table 6
| CLMS architecture analysis results.

* xc: the target image; xr: the reconstructed target image; xc: the canonical form.
A: Multi-scale image reconstruction; B: Reconstruction prediction consistency; C: Data augmentation; D: Style feature alignment.
●: Including this module; £: Excluding this module.
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collected from a wide-angle fundus camera (Roth et al., 2001), looking
for Plus signs like peripheral dilation, tortuosity, and iris engorgement.
Ideally, automated retinal image analysis using deep learning can
enhance the efficiency and accuracy of Plus disease diagnosis (Fig. 4A).

We used three fundus datasets from Guangdong Women and Chil-
dren Hospital at Panyu (PY), Zhongshan Ophthalmic Center, Sun Yat-sen
University (ZOC) and ZhuHai Center for Maternal and Child healthcare
(ZH) (Table S3). We used PY as the source, ZOC as the target, and ZH as
the augmentation. We observed distinct differences between the source
and the target fundus images (Fig. 4B). The source images had an overall
reddish tone with lower contrast and clarity, mainly showing venous
vessels. The target images were greenish, with higher contrast, and
showed both arteries and veins. Such domain gaps present a challenge
for clinical translation.

We adapted a deep learning system for Plus disease diagnosis, which
involved two modules: a segmentation module for retinal vessel
morphology, and a classification module for analyzing vessel
morphology to detect Plus disease (Fig. 4A) (Yildiz et al., 2020). The
model achieved an AUC of 81.1 % on the target data for Plus disease
classification. We adapted only the segmentation module on target data
while keeping the classification module fixed to validate if adapting just
the segmentation module alone effectively transfers vascular
morphology knowledge and integrates properly with the original clas-
sifier. Our analysis showed that CLMS was the only method that
significantly improved AUC by 11.2 % to 92.3 % (P< 0.01). Other SFDA
methods showed no significant changes from source performance
(Fig. 4C). Moreover, CLMS achieved the highest metrics including
sensitivity and Type I/II error rates at 0.05 significance level (Fig. 4D
and Table 5). This affirmed that CLMS works not only by removing the
discrepancies across domains but also retains the morphological struc-
tures necessary for clinical analysis.

Due to the severity of ROP and the urgency for early treatment, the
screening method should minimize Type II error as much as possible to
avoid missing disease detection and consequently missing the optimal
treatment window. Compared with SFDA methods, it turned out that
CLMS notably reduced the Type II error rate (22.14 %), whereas source
model, FSM, PAFA-CL, TSF, CROTS, and IAPC demonstrate Type II error
rates of 52.69 %, 51.16 %, 49.63 %, 57.27 %, 52.68 %, and 63.38 %,
respectively (Table 5). Furthermore, while CLMS and PAFA-CL both
achieved no missing disease detection (100 % sensitivity) in detecting
Plus lesions, PAFA-CL (13.74 %) exhibits significantly lower specificity
compared to CLMS (69.47 %). At the same time, in these methods,
including the source model, all except PAFA-CLmust modify the original
Plus disease classifier to achieve no missing disease detection, compli-
cating the adaptation.

In summary, CLMS minimizes missed diagnosis rates through lower
Type II error while also reducing misdiagnoses through higher speci-
ficity, allowing it to retain morphological features critical for clinical
diagnosis. Compared to other methods, CLMS adapted segmentation to
new domains while excelling at Plus lesion detection, critical for this
vision-threatening disease requiring urgent treatment.

4.4. CLMS Architecture Analysis

4.4.1. Ablation analysis
We conducted comprehensive ablation experiments on both prostate

and polyp segmentation tasks to assess the impact of eachmodule within
the CLMS framework (Table 6). The results consistently demonstrated
that the removal of any individual module led to a decrease in perfor-
mance compared to the full framework, thus confirming each compo-
nent’s significant contribution to the overall performance gain.

In both segmentation scenarios, the removal of the continual
learning module resulted in the most significant decline in Dice scores.
For prostate segmentation, this led to decreases of 10.99 %, 10.79 %,
and 4.38 % for target sites 1, 2, and 3, respectively. Similarly, for polyp
segmentation, it caused an 11.28 % Dice decline. These findings

underscore the module’s crucial role in facilitating adaptation.
To further elucidate the efficacy of the continual learning module,

we disaggregated it into two components: the reconstruction prediction
consistency module and the data augmentation module. For prostate
segmentation, the individual absence of these components led to de-
clines of 3.87% and 0.63% for target site 1, 2.64 % and 2.92% for target
site 2, and 0.7 % and 1.47 % for target site 3, respectively. In polyp
segmentation, their individual absence resulted in declines of 11.87 %
and 3.87 %, respectively. This proved that both target and external
unlabeled data facilitate better adaptation. The improvements aligning
with incorporated modules demonstrated the enhanced domain adap-
tation capability of our full framework.

4.4.2. Architecture analysis
We conducted an architectural analysis of CLMS using prostate MRI

and colonoscopy image datasets to investigate the crucial interplay be-
tween its key components. This analysis aimed to elucidate the roles of
various connection routes within the CLMS framework and their effects
on domain adaptation.

In one set of experiments, we modified continual learning module by
substituting the reconstructed target image with the canonical form,
which led to performance drops across all tests (Fig. S1). For prostate
segmentation, the three target domain centers showed performance
decreases of 1.38 %, 3.84 %, and 3.81 %. The polyp segmentation task
experienced a more pronounced drop of 9.72 %. This performance
decline likely stems from the canonical form and the target image
belonging to different domains, potentially leading to label in-
consistencies, disrupting the target-to-canonical mapping, and hinder-
ing the retention of high-level anatomical features.

A similar trend was observed when modifying style feature align-
ment module to use the reconstructed target image instead of the ca-
nonical form (Fig. S2). For prostate segmentation, performance declines
of 3.11 %, 12.02 %, and 1.5 % were noted for the three target domain
centers, while polyp segmentation performance dropped more dramat-
ically by 14.11 %. This decrease in performance may be attributed to the
stylistic differences between the reconstructed target image and the
source domain features, leading to misalignment in feature mapping.
Additionally, the reconstructed target image receives conflated style
features from both source and target domains, making it challenging to
separate them effectively.

5. Discussion

This study proposed CLMS, a novel source-free domain adaptation
framework leveraging multi-scale image reconstruction, continual
learning, and style feature alignment. CLMS demonstrates several key
strengths. First, it effectively retains source domain performance while
adapting to new target data, allowing it to generalize medical knowl-
edge from the source without overfitting to the target. This dual learning
capability is vital for maintaining robustness across domains. Second,
unlike self-training approaches, CLMS avoids potentially inaccurate
pseudo-labels that can compromise the learning process. Moreover,
existing medical SFDA solutions often employ multi-step cascaded
training, which can propagate errors. CLMS instead uses end-to-end
joint optimization in a single model, reducing error accumulation and
enabling more focused learning. This study demonstrates the efficacy of
the proposed CLMS framework for source-free domain adaptation across
three important medical image analysis tasks: prostate segmentation
fromMRI, colon polyp segmentation from colonoscopy images, and Plus
disease classification from retinal images. CLMS consistently achieved
state-of-the-art performance across all target domains, significantly
outperforming existing methods like FSM, PAFA-CL, TSF, CROTS, and
IAPC.

The continual learning module is essential for effective adaptation in
CLMS. Its absence led to the most significant performance declines in
ablation studies, underscoring the necessity of utilizing both target and
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additional public data to reduce domain gaps while preserving source
knowledge. One of the key benefits of the continual learning approach is
CLMS’s ability to adapt models to new target domains without sacri-
ficing performance on the original source domain. In contrast, other
SFDA methods may perform well on dissimilar target images but often
lose accuracy on source-consistent data due to catastrophic forgetting.
Established continual learning methods, however, not only maintain but
can also enhance performance on images similar to the source domain.
While inheriting this valuable characteristic of continual learning, CLMS
demonstrated outstanding performance across target domains while
requiring significantly less information than other continual learning
methods. This capability highlights CLMS’s strength in learning
invariant representations, such as morphological structures, that trans-
fer effectively across domains without overfitting to target distributions.

CLMS demonstrated efficacy across multiple medical imaging mo-
dalities and analysis tasks. For prostate and colon polyp segmentation, it
directly adapted the segmentation model to the target domain images.
Moreover, it improved integrated diagnosis in the Plus disease classifi-
cation task by adapting only the retinal vessel segmentation module.
This highlighted its ability to retain morphological features critical for
subsequent clinical classification, beyond just removing domain gaps.

While CLMS showed reliable performance across modalities and
datasets, evaluating CLMS on larger-scale target datasets with higher
resolution images could better characterize its computational efficiency
and scalability for real-time clinical analysis. Additionally, deploying
CLMS in actual diagnostic settings with clinical evaluation would be
essential to fully validating its utility and generalizability for enhancing
real-world imaging pipelines. Finally, expanding the evaluation to more
extensive manual labeling tasks beyond segmentation and classification
would further verify its adaptable performance across diverse medical
applications.

6. Conclusion

The study introduced CLMS, a novel end-to-end source-free domain
adaptation framework that effectively bridges domain gaps across
diverse medical imaging modalities. CLMS demonstrated superior per-
formance compared to existing methods in segmentation tasks on
prostate MRI, colonoscopy, and retinal image datasets. Crucially, CLMS
retained crucial morphological features during adaptation, enabling
seamless integration with downstream clinical analysis pipelines.
Comprehensive evaluations validated CLMS’s ability to adapt models to
new target domains while preventing catastrophic forgetting of source
knowledge. Overall, CLMS presents a promising solution for translating
deep learning models to varied clinical settings, advancing medical
imaging and healthcare applications.
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