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Abstract 

Background: Structural variation (SV) detection methods using third-generation 
sequencing data are widely employed, yet accurately detecting SVs remains challeng-
ing. Different methods often yield inconsistent results for certain SV types, complicat-
ing tool selection and revealing biases in detection.

Results: This study comprehensively evaluates 53 SV detection pipelines using simu-
lated and real data from PacBio (CLR: Continuous Long Read, CCS: Circular Consensus 
Sequencing) and Nanopore (ONT) platforms. We assess their performance in detecting 
various sizes and types of SVs, breakpoint biases, and genotyping accuracy with vari-
ous sequencing depths. Notably, pipelines such as Minimap2-cuteSV2, NGMLR-SVIM, 
PBMM2-pbsv, Winnowmap-Sniffles2, and Winnowmap-SVision exhibit comparatively 
higher recall and precision. Our findings also show that combining multiple pipelines 
with the same aligner, like pbmm2 or winnowmap, can significantly enhance perfor-
mance. The individual pipelines’ detailed ranking and performance metrics can be 
viewed in a dynamic table: http:// pmglab. top/ SVPip eline sRank ing.

Conclusions: This study comprehensively characterizes the strengths and weaknesses 
of numerous pipelines, providing valuable insights that can improve SV detection 
in third-generation sequencing data and inform SV annotation and function prediction.

Keywords: Structural variation, Long-reads, Third-generation sequencing, Sequence 
aligner, SV caller, Pipeline evaluation

Background
Structural variations (SVs) refer to the variation length exceeding 50 bp in the genome 
belonging to a broad category of genomic variations [1–4]. The types of SV usually 
include DEL (deletion), INS (insertion), INV (inversion), DUP (duplication), TRA (trans-
location), and complex SVs. SVs contribute to the genetic diversity of human genomes, 
potentially influencing genes or regulatory regions, thus leading to phenotypic varia-
tion or susceptibility to diseases [3, 5, 6]. However, precisely detecting SVs is much more 
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complex than detecting single-nucleotide variants due to their structural complexity 
and variable lengths [7–9]. The second-generation sequencing (SGS) technology, widely 
employed for sequencing purposes, often encounters difficulties in accurately identify-
ing SVs owing to its limited read length [2, 8–10]. The emergence of third-generation 
sequencing (TGS), characterized by its ability to generate long reads, holds promise for 
more accurate SV detection [7–12].

Multiple methods and tools have been developed to detect SVs based on TGS. Most 
tools are built on the alignment strategy for SV detection, owing to lower resource con-
sumption and higher speed than other strategies, such as genome-wide de novo assem-
bly [11–14]. Under this strategy, an SV detection pipeline typically includes an aligner 
and a caller. There are five commonly used aligners to align long reads (including LRA 
[15], minimap2 [16, 17], NGMLR [13], pbmm2 (https:// github. com/ Pacifi cBio scien ces/ 
pbmm2), and winnowmap [18, 19]). Ren and Chaisson developed LRA, which utilizes 
SDP with a concave-cost gap penalty, demonstrating improved sensitivity and speci-
ficity for SVs larger than 1 kb [15]. Minimap2 employs the seed-chain-align strategy to 
enhance alignment speed and incorporates heuristic methods to improve the accuracy 
of alignments [16]. NGMLR breaks down long reads into shorter fragments, aligns them 
to the genome, and then determines the optimal combination of these fragments, pro-
viding advantages in resolving SVs [13]. Pbmm2 and winnowmap are improvements 
to minimap2. Pbmm2 is specifically designed to handle PacBio data and achieve more 
accurate alignments. At the same time, winnowmap optimizes alignments of reads to 
repetitive regions in the genome [18, 19]. Meanwhile, caller tools are continuously being 
developed, for example, cuteSV [11], cuteSV2 [20], DeBreak [12], DELLY [14], and SVi-
sion [21]. Among them, cuteSV utilizes a clustering-and-refinement method to analyze 
signatures, enabling sensitive detection of SVs [11]. DeBreak detects large SVs using a 
local de novo assembly approach [12]. DELLY was initially designed for SGS and has 
been enhanced to detect SV in TGS data [14]. SVision utilizes an artificial neural net-
work to enhance SV detection, particularly excelling in resolving complex SVs [22]. 
However, due to the complexity of SVs and noise in TGS data, tools based on various 
assumptions and models often exhibit varying performances and relatively low consist-
ency in SV detection. Accurately detecting all SV sites and genotypes from TGS data 
remains a significant challenge for most existing tools [22, 23]. Therefore, a more thor-
ough comparative analysis of these methods is required to effectively select aligners and 
callers in practical applications.

Despite previous evaluations bringing attention to SV pipeline calling, assessments 
based on TGS are still limited and lack comprehensiveness, indicating the need for fur-
ther improvement and supplementation. For example, the evaluation of Zhou et al. pro-
vided interesting insights into the usage and performance of pipelines at an earlier stage. 
However, the aligners (e.g., GraphMap [24] and LAST [25]) they assessed are now less 
commonly used due to the evolution of tools and technologies [26]. Moreover, Bolognini 
and Magi’s pipeline evaluation [23] and the above studies did not consider the genotype 
accuracy regarding Mendelian error rate (MIER). Due to the lack of precise reference 
data, the MIER assessment may offer a favorable method to evaluate pipelines’ detec-
tion capabilities. Additionally, most studies overlooked the length and breakpoint devia-
tion of SVs detected by pipelines, which is crucial for SV functionality annotation and 
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prediction. While Kosugi et al. considered breakpoint and length deviation in their eval-
uation, the primary focus was on SGS calling algorithm performance rather than TGS 
[27]. Dierckxsens et al. developed Sim-it, a tool for simulating SVs and long reads, and 
evaluated the strengths and weaknesses of 7 callers and long-read sequencing platforms 
[28]. Their study introduced a new method called combiSV, which combines results 
from SV callers into a higher-quality call set with improved recall and precision. How-
ever, these evaluations mainly focused on callers and a few aligners, lacking analysis of 
the impact of aligners on SV detection. In addition to existing evaluation studies, avail-
able benchmark resources for SVs are gradually increasing, such as Genome in a Bottle 
(GIAB) [29], Human Genome Structural Variation Consortium (HGSV) [30], and The 
Human Pangenome Reference Consortium (HPRC) [31]. Although the studies and data-
sets mentioned above have provided many insights and assistance for better SV detec-
tion, a comprehensive evaluation of SV detection pipelines remains essential.

In this study, we evaluated the performance of 53 SV detection pipelines. These pipe-
lines were established using five aligners and 12 callers. We used SVs collected from 
public databases as the SV benchmark for the evaluation datasets to simulate TGS data 
using Visor. For real data, the SV benchmarks and sequencing data were derived from 
HG002 (GIAB [29]), CHM13 (HPRC [30]), HG00096, HG00512, and NA12878 (HGSV 
[31]). Next, we investigated the performance of these pipelines in detecting various types 
of SVs in the samples. We explored different scenarios, focusing on 12 aspects, including 
length deviation, breakpoint accuracy, and Mendelian error rate (MIER) [32–34]. Finally, 
we discussed the performance improvements gained from merging multiple pipelines 
compared to using a single pipeline.

Results
Study design review

We initially assessed and compared the performance of 72 genomic SV detection pipe-
lines. These pipelines were constructed by using six aligners (lordfast [35], LRA [15], 
minimap2 [16, 17], NGMLR [13], pbmm2 (https:// github. com/ Pacifi cBio scien ces/ 
pbmm2), winnowmap [18, 19]) and 12 callers (cuteSV [11], cuteSV2 [20], DeBreak [12], 
DELLY [14], pbsv (https:// github. com/ Pacifi cBio scien ces/ pbsv), Picky [36], NanoSV 
[37], NanoVar [22], Sniffles [13], Sniffles2 [34], SVIM [38], SVision [21]). These pipelines 
were executed within our laboratory server environment and tested against multiple 
benchmark samples (details in the “Methods” section). However, the output of pbmm2 
lacks the “AS” tag required by the NanoVar caller in the BAM file. Additionally, lordfast 
led to too low accuracy in our testing datasets (Additional file 1: Fig. S1). Furthermore, 
we observed compatibility issues between certain callers (Sniffles, DELLY, Picky, Nano-
Var, NanoSV, and pbsv) and the LRA aligner’s BAM file. Consequently, we excluded 
pipelines such as LRA-Sniffles, LRA-DELLY, LRA-Picky, LRA-NanoVar, LRA-NanoSV, 
LRA-pbsv, pbmm2-NanoVar, and those associated with lordfast. Subsequently, we 
comprehensively analyzed and evaluated the remaining 53 pipelines (Additional file 2: 
Table S1). The accuracy, recall, and F1 score of these pipelines were assessed using Tru-
vari (v2.1) [39] against high-quality SV benchmarks (see “Methods” and Supplementary 
Data). Performance comparison was based on the F1 measure, aggregating F1 scores 
across different SV types (DEL, INS, INV, DUP, BND) and precision and recall measures 
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for each SV type, ranging from 0 to 5. Currently, many callers report translocations 
(TRA) in the form of breakpoints (BND), lacking complete TRA information. Therefore, 
referring to the work of Jiang et al. [11], we used the BND records in the VCF file, which 
might represent the TRA type. Our evaluation considered 12 critical factors: SV length 
deviation, breakpoint deviation, SV types, SV lengths, sequencing platform, sequencing 
depth, genotyping accuracy, Mendelian error rate, minimum supporting read number, 
reference genomes, computation consumption, and merging strategies.

The evaluation was conducted using benchmark SVs from both simulated and real 
datasets. The simulated dataset comprised 20,541 non-overlapping SVs, including 7214 
deletions, 9989 insertions, and 51 inversions identified within the CHM1 sample call 
set (dbVAR database accession nstd137 [40], which includes INS sequence). Addition-
ally, 2919 duplications and 368 translocations extracted from the KWS1 sample call set 
(dbVAR database accession nstd106 [41]) were included. The length distributions of 
deletions and insertions are similar, characterized by two main peaks at 50 bp and 300 
bp. Duplication lengths are primarily concentrated in 50 bp and 3000 bp, while inver-
sions exhibit peaks at 360 bp and 10 kb (Additional file 1: Fig. S2). All simulated trans-
location lengths are 10 kb [11]. The distribution of simulated SVs across the genome is 
generally consistent with that observed in real data (Additional file 1: Fig. S3). Due to the 
limited availability of real ground-truth SV datasets, pipelines were benchmarked only 
against insertion and deletion discovery in samples HG002 (GIAB [29]), CHM13 (HPRC 
[30]), HG00096, HG00512, and NA12878 (HGSV [31]). However, no benchmarking 
was conducted for duplications, inversions, or translocations for real samples [12]. As 
the SVs in HG002 are based on GRCh37, we utilized LiftOver to convert them to the 
GRCh38 version. Following conversion, we obtained 5418 deletions and 7266 insertions. 
For CHM13, there are 7622 deletions and 12,448 insertions. In HG00096, there are 6151 
deletions and 10,091 insertions. HG00512 exhibits 6135 deletions and 10,118 insertions, 
while NA12878 displays 6115 deletions and 9956 insertions (Additional file 2: Table S2).

Reads utilized for SV detection pipelines were sourced from both simulated and 
real datasets. The VISOR (v1.1) [42] tool was employed to generate simulation reads 
(PacBio: CCS, CLR; Nanopore: R9.4, R10.4) using the human reference genome (version: 
GRCh38). Simulated reads from two platforms, PacBio and Nanopore, had mean read 
lengths of 8 kb, with default error models. Real read datasets for PacBio CCS included 
samples from CHM13, HG00096, HG002, HG003, HG004, HG00512, HG005, HG006, 
HG007, and NA12878, with average read lengths ranging from 10 to 18 kb (Additional 
file 2: Table S3). The CLR datasets encompassed samples from CHM13, HG002, HG003, 
HG004, HG00512, HG005, HG006, and HG007, with average read lengths ranging 
from 8 to 25 kb. Nanopore datasets included samples from CHM13, HG00096, HG002, 
HG003, HG004, HG00512, and NA12878, with average read lengths ranging from 8 to 
56 kb (Additional file 2: Table S3). Additionally, real family data samples were utilized for 
assessment: Nanopore (HG002 (son), HG003 (father), HG004 (mother)), PacBio (HG002 
(son), HG003, HG004), and (HG005 (son), HG006 (father), HG007 (mother)).

Pipeline performance in simulated datasets

We first evaluated the performance of 53 pipelines with relatively high coverage of 
25 × on the CCS platform, known for its higher sequencing accuracy according to 
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previous studies [28, 43–46]. In the simulated data, 26 pipelines achieved an aggre-
gated F1 measure exceeding 3.5, indicating superior performance (Fig.  1). Notable 
pipelines include winnowmap-pbsv, NGMLR-SVIM, pbmm2-SVIM, pbmm2-pbsv, 
and winnowmap-SVIM. However, SVision’s lack of TRA/BND reports leads to a lower 
aggregated F1 measure (< 3.5). The frequencies of different callers in the top 26 pipe-
lines showed no large discrepancy. CuteSV, cuteSV2, pbsv, and SVIM each comprised 
15.4%, followed by Sniffles and Sniffles2 at 11.5%, and DeBreak and NanoVar at 7.7%. 
In contrast, the aligners were dominated by four out of the five: winnowmap (30.8%), 
NGMLR (26.9%), pbmm2 (23.1%), and minimap2 (19.2%). Nevertheless, NGMLR-SVi-
sion, pbmm2-SVision, and winnowmap-SVision maintained high F1 measures (> 3) for 
the other four SV types (DEL, INS, DUP, and INV). Interestingly, the top-ranked pipe-
lines varied by SV type. For DEL variant detection, winnowmap-cuteSV, minimap2-
cuteSV, winnowmap-cuteSV2, winnowmap-Sniffles2, and minimap2-Sniffles2 exhibited 
top-tier performance (F1 > 0.97). For INS variant detection, LRA-cuteSV, minimap2-
DeBreak, pbmm2-DeBreak, winnowmap-DeBreak, and LRA-DeBreak had higher F1 
scores (> 0.94). For INV detection, the pipelines NGMLR-SVIM, NGMLR-SVision, 
pbmm2-Picky, pbmm2-SVIM, and pbmm2-SVision demonstrated superior performance 
(F1 > 0.69). Similarly, winnowmap-pbsv, winnowmap-DeBreak, winnowmap-SVision, 
winnowmap-cuteSV2, and winnowmap-cuteSV demonstrated superior performance in 

Fig. 1 Performance of SV detection pipelines in different SV types (CCS). Precision and recall of DEL, DUP, 
INS, INV, and BND were determined with the simulated (a, b (DUP_INS)) and the real data (c). F1 measures, 
which combine precision and recall statistics (see the “Methods” section for details), are depicted for pipelines 
distinguished by different colored bars. Pipelines are categorized according to the alignment tools (lra, 
minimap2, ngmlr, pbmm2, winnowmap)
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DUP detection (F1 > 0.65). Lastly, in BND detection, minimap2-pbsv, pbmm2-cuteSV2, 
minimap2-cuteSV2, minimap2-cuteSV, and pbmm2-cuteSV achieved outstanding F1 
scores (F1 > 0.97).

The top-performing pipelines also exhibit variations based on precision and recall 
metrics. The top 5 pipelines for DEL variant detection with the highest precision include 
NGMLR-cuteSV, NGMLR-cuteSV2, winnowmap-cuteSV2, winnowmap-cuteSV, and 
LRA-cuteSV2 (precision > 0.99) (Additional file  1: Fig. S4, Additional file  4: Table  S5). 
Regarding INS variant detection, the top 5 pipelines with the highest precision are 
LRA-cuteSV, pbmm2-pbsv, minimap2-pbsv, NGMLR-cuteSV, and LRA-cuteSV2 (preci-
sion > 0.98). Notably, cuteSV and cuteSV2 consistently demonstrate higher performance 
across F1-based prioritization as well. Regarding recall rate, the top 5 pipelines for DEL 
variant detection are LRA-SVision, winnowmap-SVision, minimap2-SVision, winnow-
map-DeBreak, and NGMLR-SVision (recall > 0.96). For INS variant detection, the top 5 
pipelines with the highest recall are LRA-SVision, pbmm2-DeBreak, pbmm2-SVision, 
minimap2-DeBreak, and winnowmap-DeBreak (recall > 0.94). SVision and DeBreak call-
ers appear to exhibit higher recall rates than other callers.

Furthermore, we conducted an in-depth analysis of INS and DUP types using simu-
lation, as some tools do not distinguish between them. Initially, we observed that a 
significant fraction of DUP events were incorrectly identified as INS events by callers 
(30 ~ 60%). In contrast, a minority of INS events were erroneously reported as DUP 
events by callers (0.153%) (Additional file 3: Table S4). Moreover, minimap2 was found 
to exacerbate the proportion of DUP events reported as INS by callers (~ 70%) compared 
to other aligners. Conversely, NGMLR increased the proportion of INS events reported 
as DUP by callers compared to other aligners (~ 10%). To address this discrepancy, we 
re-evaluated them using a merged DUP_INS type in simulated data (i.e., transforming 
all duplications and insertions into insertions for evaluation). After excluding the aligner 
LRA due to its poor performance, we observed a high consistency in the F1 measure 
levels of pipelines between DUP_INS and non-DUP_INS scenarios (Spearman correla-
tion R = 0.82, Pearson correlation R = 0.9, R^2 = 0.95, Additional file 1: Fig. S5). Among 
the top 10 pipelines based on the F1 measure, eight were consistent for DUP_INS and 
non-DUP_INS scenarios (Fig.  1). This high consistency suggests that the relative per-
formance of most pipelines may not be significantly affected by the misclassification of 
DUP and INS events.

Due to breakpoint deviations, length discrepancies, and the lack of INS sequences 
from some callers, most researchers do not consider sequence differences when evaluat-
ing pipeline performance on INS. Therefore, we initially assessed pipeline performance 
without considering INS sequence consistency, as shown in Additional file 1: Figs. S6–7. 
We then analyzed performance changes under varying levels of INS sequence consist-
ency. Our findings indicated that in simulated data, pipelines exhibited smaller declines 
in F1 scores when INS sequence consistency ranged from 0.3 to 0.5 compared to 0.6 to 
0.9 (Additional file 1: Fig. S7a). A similar performance decrease pattern was observed in 
real data. The decline in F1 scores was smaller when INS sequence consistency ranged 
from 0.3 to 0.5 compared to 0.6 to 0.9 (Additional file  1: Fig. S7b). This suggests that 
while most pipelines detect INS positions accurately, they often do not achieve high 
sequence consistency.
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Pipeline performance in real datasets

In real data, 26 pipelines exhibit F1 measures (for DEL and INS variant detection) 
exceeding 1.65 for the TGS data with coverage of 25 × produced by the CCS platform 
(Fig. 1). Notable performers include LRA-cuteSV, minimap2-DeBreak, pbmm2-DeBreak, 
winnowmap-DeBreak, and pbmm2-cuteSV. Within these pipelines, pbmm2-cuteSV2, 
pbmm2-SVIM, pbmm2-cuteSV, pbmm2-SVision, and pbmm2-Sniffles2 demonstrate 
top-tier performance for DEL variant detection (F1 > 0.87). Similarly, for INS vari-
ant detection, minimap2-cuteSV2, pbmm2-cuteSV2, minimap2-Sniffles2, minimap2-
cuteSV, and pbmm2-SVision stand out (F1 > 0.83). The distribution of different callers 
among the 26 higher-performance pipelines includes cuteSV (19.2%), cuteSV2 (19.2%), 
Sniffles2 (15.4%), SVIM (15.4%), SVision (15.4%), DeBreak (11.5%), and NanoVar (3.8%). 
Regarding aligners, minimap2 (26.9%), pbmm2 (23.1%), winnowmap (23.1%), LRA 
(15.4%), and NGMLR (11.5%) are represented among these pipelines.

Regarding precision, the top five pipelines for DEL variant detection in real sam-
ples are pbmm2-cuteSV, NGMLR-cuteSV, minimap2-cuteSV, LRA-cuteSV, and LRA-
cuteSV2 (precision > 0.91). For INS variant detection, NGMLR-Picky, minimap2-cuteSV, 
NGMLR-Sniffles, NGMLR-cuteSV, and pbmm2-cuteSV demonstrate precision exceed-
ing 0.89 (Additional file  1: Fig. S4). Notably, although NGMLR-Picky has a lower F1 
score, its precision remains high. Concerning recall, pbmm2-SVIM, pbmm2-SVision, 
minimap2-SVIM, minimap2-SVision, and pbmm2-Sniffles2 rank highest for DEL vari-
ants (recall > 0.85), while pbmm2-NanoSV, minimap2-SV, minimap2-SVision, pbmm2-
SVision, and minimap2-SVIM excel for INS variant recall (recall > 0.85). Thus, the overall 
trends mirror those observed in simulated data, with cuteSV and cuteSV2 exhibiting 
higher precision and SVision showing a higher recall rate.

Runtime and memory usage of aligners and callers of the pipelines

In large-scale tasks such as analyzing SV samples from populations, the computing 
resources utilized by the pipelines play a crucial role. We assessed the runtime and 
memory consumption of aligners and callers in the HG002 samples. Among the three 
sequencing technologies, minimap demonstrated the largest speed (CCS: 10 min; CLR, 
ONT: ~ 15 min) based on 5 × sequencing depth, while NGMLR was the slowest (CCS: 
400 min, CLR: 80 min, ONT: 90 min, Additional file 1: Fig. S8a). Our findings align with 
the trend in Ren and Chaisson’s results [15], where the same aligner typically demon-
strates a sequence of CLR > ONT > CCS regarding runtime across different data types. 
As expected, longer read lengths resulted in increased runtime for the aligner, with this 
influence being more pronounced for NGMLR (Additional file 1: Fig. S8a,e). In terms 
of memory consumption, LRA performed the best (CCS: 40  GB, CLR: 27  GB, ONT: 
25 GB), while winnowmap consumed the most memory in CCS at 110 GB (Additional 
file 1: Fig. S8b). Among callers, Sniffles2 emerged as the fastest and the least memory-
consuming compared to Sniffles, making it ideal for large-scale SV analysis. Addition-
ally, cuteSV (1.6 min), cuteSV2 (1.5 min), and DeBreak (3 min) also performed well in 
terms of speed (Additional file 1: Fig. S8c). Among the callers, Sniffles2, SVIM, Sniffles, 
DeBreak, Picky, SVision, cuteSV, and cuteSV2 consumed less than 3.5 GB of memory, 
while pbsv consumed the most memory (30 GB, Additional file 1: Fig. S8d).



Page 8 of 25Liu et al. Genome Biology          (2024) 25:188 

Impact of sequencing platforms, depth, SV sizes, and supporting reads on the detection 

performance pipeline

We conducted a comparative analysis of Nanopore (R9, R10) and PacBio (CCS, CLR) 
data across multiple sample datasets using various pipelines (Additional file 1: Fig. S9). 
Our findings revealed that for DEL variant detection, the pipelines performed signifi-
cantly better on CCS datasets than R9 and CLR (p = 8.1e − 8, p = 8.9e − 5, t-test) (Addi-
tional file 1: Fig. S9a). Similarly, the F1 score of pipelines for INS variant detection on 
real CCS datasets was significantly better than R9 and CLR (p = 2.9e − 11, p = 7.6e − 16, 
t-test) (Additional file  1: Fig. S9b). Additionally, while no significant differences were 
observed between the R9 and CLR datasets for DEL variant detection, significant dif-
ferences were evident for INS variant detection (p = 5.7e − 9, t-test). However, no sig-
nificant differences were observed in simulated data among the R9, R10, CLR, and CCS 
datasets for every SV type (Additional file 1: Fig. S9a–e).

We also investigated the effect of sequencing depth on the performance of the pipe-
lines. Our findings indicate that higher sequencing depth can enhance pipeline recall 
by providing better coverage of SV signals. We evaluated four sequencing depths (5 × , 
10 × , 15 × , 25 ×), revealing that the recall and F1 score at 10 × sequencing depth was 
approximately 17% and 8% higher than those at 5 × sequencing depth (Additional file 1: 
Fig. S10a,c). Moreover, increasing the sequencing depth from 10 × to 15 × and 25 × fur-
ther improved recall and F1 score (recall: 4%, 3%; F1: 3%, 2%). Our results suggest that 
in scenarios where the cost of sequencing is directly proportional to the sequencing 
depth, opting for a sequencing depth of 10 × may offer a cost-effective solution (Addi-
tional file 1: Fig. S10). However, we highly recommend considering a sequencing depth 
of 15 × or higher for optimal performance if feasible.

We further explored the sensitivity of different aligners or callers to performance vari-
ations. Our analysis revealed that F1 measure fluctuations are greater for pipelines using 
the same aligner than those using the same caller in simulated and real data (Additional 
file 1: Fig. S11). This observation suggests that the choice of caller may be more influen-
tial than the choice of aligner in our current pipelines. Notably, pipelines utilizing call-
ers such as cuteSV, cuteSV2, Delly, and Sniffles2 appear to be less affected by variations 
among aligners.

Our analysis examined the F1 scores for detecting SVs across five length range groups 
(50–100 bp, 100–500 bp, 500–1 kb, 1–2.5 kb, > 2.5 kb). Overall, most pipelines demon-
strated consistent performance across varying SV sizes, indicating a lack of sensitivity 
to SV size. The F1 scores for different length ranges were largely similar (ranging from 
0.7 to 0.8) among the pipelines, although they exhibited a slight increase for SVs longer 
than 2.5 kb (approximately 0.85–0.9, Additional file 1: Fig. S12). However, a few pipe-
lines exhibited slightly higher sensitivity to SV size. For instance, NGMLR-DeBreak 
performed slightly worse than other pipelines in detecting deletions longer than 2.5 kb. 
NGMLR-SVIM showed lower F1 scores for insertions over 2.5  kb compared to other 
length ranges.

We also investigated how varying thresholds of minimal supporting reads affect per-
formance in terms of the F1 score. In this analysis, we adjusted the filtering thresholds 
of minimal supporting reads for an SV from 2 to 20 across all simulated and real sam-
ple datasets with an average coverage of 25 in the CCS platform. The F1 score of most 
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pipelines decreased as the minimal supporting read threshold increased, primarily due 
to a decrease in the recall rate (Additional file 1: Fig. S13c). A minimal supporting read 
threshold of 2–3 would be a suitable choice for quality control for a sequencing sample. 
Therefore, most evaluations in this paper were conducted based on the thresholds of 
minimal supporting reads of 2 unless specifically stated. However, for some pipelines, 
the F1 scores initially increased and then decreased with an increase in minimal sup-
porting reads for INS variants, owing to the balance between precision and recall. This 
pattern was observed in pipelines associated with NanoSV, minimap2-SVision, and 
winnowmap-SVision. The optimal minimal supporting read threshold for detecting INS 
variants with these pipelines was 4–5 (Additional file 1: Fig. S13d).

The accuracy of SV called breakpoint and length

We also evaluated the deviations of breakpoints using Truvari on simulated data [39]. 
Across most pipelines, SV breakpoint deviations were detected on both the left and right 
sides within the − 50 to 50 bp range (Additional file 1: Figs. S14–15). When consider-
ing various types of SVs, we observed that the Sniffles and Sniffles2 callers performed 
exceptionally well for DEL variants, exhibiting more accurate breakpoint detection with 
fewer errors than other tools. Pipelines incorporating Pbsv demonstrated that 90% of 
breakpoint deviations for INS variants were concentrated between − 10 and + 10 bp. For 
INV SVs, pipelines related to Sniffles2, Picky, and SVIM displayed a high proportion of 
zero breakpoint deviations, ranging from 30 to 40%. Lastly, for DUP variants, pipelines 
associated with cuteSV, cuteSV2, Sniffles, Sniffles2, NanoSV, and Picky showcased high 
proportions of zero breakpoint deviations ranging from 40 to 60% (Fig. 2).

We then analyzed the length deviations called SVs. In simulated data, pipelines con-
taining the callers cuteSV, cuteSV2, and DeBreak detected the highest proportion of 
DELs with zero SV size deviation, at approximately 40% (Fig.  3). Following them, the 
Sniffles2, SVIM, and SVision pipelines also identified a relatively high proportion of 
DELs with zero SV size deviation, ranging from 20 to 30%. In real data, pipelines linked 
to the callers cuteSV, cuteSV2, DeBreak, Sniffles2, SVIM, and SVision performed very 
well, detecting 40 to 60% of DELs with zero SV size deviation. For INS variants in simu-
lated data, pipelines associated with the callers Delly, NanoSV, Nanovar, Pbsv, Sniffles, 
and Sniffles2 exhibited smaller length deviations (Additional file  1: Fig. S12). Among 
these pipelines, the proportion of INS with zero deviation ranged from 20 to 70%. Spe-
cifically, pipelines linked to the callers Delly and Pbsv demonstrated the best perfor-
mance, with 60 to 70% of INS having zero deviation. Similarly, in real data, pipelines 
associated with Delly and Pbsv also detected a higher proportion of INS with zero SV 
size deviation, ranging from 60 to 70%.

We also observed that the length of the SV influences the size and breakpoint devia-
tions of SVs detected by pipelines. In simulated data, for DEL variant detection, pipelines 
such as LRA-cuteSV, LRA-cuteSV2, winnowmap-cuteSV, winnowmap-cuteSV2, LRA-
SVision, minimap2-SVision, and winnowmap-SVision exhibit greater SV size deviations 
when the SV length exceeds 2.5 kb (Fig. 4). In these cases, the proportion of DELs with 
length deviations between − 10 and − 50 bp and greater than 50 bp ranges from 6 to 20%. 
However, pipelines associated with DeBreak, Sniffles2, and SVIM show more stable SV 
size deviations across different SV length ranges, primarily fluctuating within the − 10 to 
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10 bp range, indicating smaller deviations. For INS variant detection in simulated data, 
pipelines from callers cuteSV, cuteSV2, and Sniffles2 detect INS with a higher propor-
tion of SV size deviations in the − 10 to − 50 bp range when the SV length exceeds 2.5 kb 
(Additional file 1: Fig. S16). These findings suggest that INS detected by pipelines tend to 
have larger length deviations than DELs at greater SV lengths (> 2.5 kb). Similarly, break-
point deviations in pipelines are also affected by SV length. Pipelines utilizing aligners 
NGMLR and LRA exhibit a higher proportion of breakpoint deviations in the ranges of 
10 to 50 bp and − 10 to − 50 bp for both DELs and INS compared to other pipelines, and 
these deviations are more influenced by SV length (Additional file 1: Fig. S17).

Accuracy of SV genotype calling

In genetic and functional studies of SVs, accuracy in SV genotyping is crucial, along-
side the ability to distinguish SV loci. Therefore, we evaluated the performance of 
SV callers from the perspective of genotype consistency (Fig.  2, Additional file  1: 
Fig. S18). In the simulated dataset, pbmm2-pbsv exhibited the highest accumulated 
F1 measure (~ 3.6) for the five type SVs, establishing itself as the top genotype call-
ing pipeline in the evaluation (Fig.  2). Additionally, pipelines utilizing callers such 
as cuteSV, cuteSV2, DeBreak, pbsv, and Sniffles2 also demonstrated strong perfor-
mance in SV genotyping accuracy (F measure > 3). Notably, DeBreak-related pipelines 

Fig. 2 Performance of SV detection pipelines in different SV types (CCS). Precision and recall of DEL, DUP, 
INS, INV, and BND were determined with the simulated (a, c (consider genotypes)) and the real data (b, d 
(consider genotypes)). F1 measures, which combine precision and recall statistics (see the “Methods” section 
for details), are depicted for pipelines distinguished by different colored bars. Pipelines are categorized 
according to the alignment tools (lra, minimap2, ngmlr, pbmm2, winnowmap)
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exhibited high F1 measure levels, particularly pbmm2-DeBreak (2.96) and winnow-
map-DeBreak (2.87), when the BND type was not included. Remarkable F1 meas-
ure levels for DEL’s and INS’s genotype calling were observed in pipelines such as 
pbmm2-cuteSV, LRA-cuteSV, minimap2-Sniffles2, and pbmm2-Sniffles2. For INV’s 
genotype calling, NGMLR-SVIM (0.71), pbmm2-SVIM (0.68), and pbmm2-SVision 
(0.65) exhibited better performance compared to other pipelines. The evaluation 
results in real data mirrored those in the simulated dataset. We found that pipelines 
using callers like cuteSV, cuteSV2, and Sniffles2 demonstrated high F1 measure levels 
for DEL and INS variants in real data (F measure > 1.6) (Fig.  2). Strong performers 
among these pipelines included pbmm2-cuteSV2 (1.67), pbmm2-cuteSV (1.66), mini-
map2-cuteSV (1.66), minimap2-cuteSV2 (1.66), and minimap2-Sniffles2 (1.64).

Fig. 3 SV size errors of SV detection pipelines. SV size errors were determined with pipelines TP and reference 
SV difference from simulated (a DEL, c INS) and real data (CCS) (b DEL, d INS). The SV size error of pipelines TP 
SV was divided into seven groups (TP SV errors: 0:10, 10:50, > 50, 0, − 10:0, − 10: − 50, <  − 50). Statistics of SV 
size error (see the “Methods” section for details)
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MIER level of different detection pipelines

We further compared the MIER of different pipelines to evaluate the accuracy of 
their genotyping in trios with real sequencing data. Our findings indicate that the 
caller is the primary factor influencing MIER levels. Overall, the evaluated pipelines 
exhibited MIER levels of less than 10%, with some outstanding pipelines achieving 
MIER levels of around 2% (Fig.  5). Specifically, for detecting DELs, pipelines asso-
ciated with the callers cuteSV2, Sniffles2, SVIM, and SVision demonstrated MIER 
levels below 2%. Similarly, for INS variant genotyping, pipelines associated with 
SVIM and SVision showed low MIER levels (~ 2%) and robust performance (Fig. 5). 
Generally, the MIER levels for INS variant detection were slightly higher than 
those for DEL variant detection, as observed in pipelines like minimap2-cuteSV2, 

Fig. 4 Distribution of SV length range and length deviation of DEL in different pipelines. The legend depicts 
colors ranging from deep blue to red, representing different deviation scales (> 50 bp, 50:10 bp, 10:0 bp, 
0 bp, 0: − 10 bp, − 10: − 50 bp, <  − 50 bp). The x-axis represents five length intervals of SV size (50–100 bp, 
100–500 bp, 500–1 kb, 1–2.5 kb, > 2.5 kb). The y-axis represents the proportion of different deviation scales 
within the corresponding length ranges
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minimap2-SVIM, and NGMLR-SVision. Additionally, in the detection of INV and 
DUP, pipelines associated with the callers DeBreak, Sniffles2, SVIM, and SVision 
exhibited very low MIER levels (~ 0%), such as LRA-cuteSV2, minimap2-cuteSV2, 
NGMLR-NanoSV, NGMLR-Sniffles2, pbmm2-DeBreak, and pbmm2-SVision (Addi-
tional file  1: Fig. S19). The lower MIER levels for INV and DUP variant detection 
than DEL and INS detection are likely due to the lower number of detected SVs in 
INV and DUP categories.

In addition to the pipelines’ impact on MIER levels, other factors also play a role, 
such as the choice of “minimum support read number” and the reference genome 
version. First, we observed the impact of the “minimum support read number” on 
the MIER levels of the pipelines. For DEL variants, the MIER initially decreased 
as the minimum support read number increased from 2 to 5, then increased as 
the number rose from 5 to 8. For INS variants, the MIER gradually decreased with 
increasing minimum support read number. Finally, for INV and DUP, increasing 
the minimum support read number led to a slow rise in MIER (Additional file  1: 
Fig. S20). Regarding the influence of the reference genome on the MIER levels of 
the pipelines, we selected a set of high-performing pipelines (aligners: minimap2, 
winnowmap; callers: cuteSV, DeBreak, Sniffles, SVision) to evaluate their MIER lev-
els based on the T2T genome. We found that the MIER levels of these pipelines for 
detecting of DEL and INS variants were consistent with those based on the GRCh38 
genome. However, for DUP and INV, these pipelines exhibited MIER levels 10–30% 
lower than those based on the GRCh38 genome (Additional file 1: Figs. S19 and S21).

Fig. 5 SV MIER (Mendelian error rate) of SV detection pipelines in pedigree. SV detection pipelines MIER 
was determined with pedigree data (ONT, CCS, CLR: HG002, HG003, HG004; CCS: HG005, HG006, HG007) in 
different SV types (DEL (a), INS (b)). Statistics MIER (see the “Methods” section for details)
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Pipeline results merging to improve performance

Some studies employ a combination of multiple pipelines or algorithms to enhance 
the detection accuracy of SV calling. However, the optimal strategy for merging mul-
tiple pipelines based on TGS data has not been systematically investigated. To address 
this gap, we calculated the accuracy, recall, and median F1 scores of merged pipelines 
consisting of two, three, and four individual pipelines, employing different merge 
strategies for various SV types (DEL, INS, INV, DUP; Fig. 6). Specifically, to assess the 
influence of aligners and callers on the merged results, we categorized our pipeline 
combinations into two groups: pipelines with the same aligner but different callers 
(the caller-based combination group) and pipelines with the same caller but differ-
ent aligners (the aligner-based combination group). Moreover, considering that the 
choice of merge strategy (intersection or union) can significantly affect the results, we 
employed “minimum number of supporting caller” values of 1 (union) and 2 (inter-
section) when using SURVIVOR to combine the results of two or more pipelines. 
Consequently, the combination categories were designated as < caller/aligner >  < pipe-
lines number >  < union/intersection > , for example, caller_2U, caller_2I, aligner_3U, 
etc. Due to the large number of possible combinations resulting from the 41 pipe-
lines (see “Methods”), we ranked them based on the median F1 score of the combined 
pipelines and focused our analysis on the top 10 combinations.

Fig. 6 The significance of F1, recall, and precision for different SV types in the top 10 combined pipelines 
compared to the individual pipelines that constitute the combination. a Overall improvement levels of DEL 
and INS in the top 10 combined pipelines across different combination methods in both simulated and 
real datasets. b Improvement levels of different SV types in the top 10 combined pipelines across various 
combination methods in simulated and real datasets. “Caller” represents combined pipelines based on the 
same aligner with different callers. In contrast, “Aligner” represents combined pipelines based on the same 
caller with different aligners. The table header format, such as “2U, 2I, 3U…,” indicates the combination 
method: the first number represents the number of combined pipelines, and the second character indicates 
whether the combination is based on union (U) or intersection (I). On the left side of the table, “REAL” denotes 
real data, and “SIM” denotes simulated data. The arrows in the table represent whether the performance 
of the combined pipeline increased or decreased compared to the individual pipelines that constitute 
the combination. The integer following the arrow indicates the number of combined pipelines with and 
without significance after merging in the top 10 combinations. The final percentage represents the extent 
of the performance improvement of the combined pipeline compared to the individual pipelines. Lastly, 
white shading represents combinations with no significance, orange indicates a significant improvement in 
performance, and green denotes a significant decrease in performance
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The performance enhancement achieved by combined pipelines was more pro-
nounced in simulated data than in real data, although pipeline combinations consist-
ently improved performance (Fig. 6, Additional file 1: Fig. S22). For instance, in real 
data, the caller_2U combination improved precision by only 2.4%, with no signifi-
cant changes in F1 score and recall before and after the pipeline merge. In contrast, 
in simulated data, there were moderate improvements across all metrics: F1 score 
(4.7%), recall (4.7%), and precision (4%) (Fig.  6a). The enhancement of the caller-
based and aligner-based combination groups was very similar in simulated data 
(Fig. 6, Additional file 1: Fig. S22). However, in real data, these two groups exhibited 
slight differences. Specifically, the 3U and 4U combinations based on caller focused 
more on improving recall, while those based on aligners emphasized enhancing 
precision. Incorporating more pipelines led to greater improvements regarding 
the number of combined pipelines. In addition, choosing the appropriate merging 
strategy (union or intersection) based on the number of pipelines being combined 
was crucial. When the number of pipelines was small, for instance, two, using the 
union strategy might result in more significant improvements than the intersection 
strategy. Conversely, if three or more pipelines were used, the intersection strategy 
enhanced performance (Fig. 6).

The analysis showed that pbmm2 had the highest frequency among the top ten 
combined pipelines regardless of the sequencing platforms (ONT: 0.451, CCS: 0.452, 
CLR: 0.455, Additional file 1: Fig. S23a). Following pbmm2, LRA (CCS: 0.153), mini-
map2 (CLR: 0.261), and winnowmap (ONT: 0.19) were the aligners with the second-
highest frequencies in the ten combined pipelines. Additionally, we noticed that the 
choice of aligner in combined pipelines displayed specificity in detecting specific SV 
types. For instance, pbmm2 was more prevalent in the top 10 merged pipelines for 
DEL (0.5) and INS variants (0.78) (Additional file 1: Fig. S23c). Conversely, NGMLR 
(0.97) was the most common aligner in the top 10 merged pipelines for INV, while 
winnowmap (0.93) was frequently observed in pipelines targeting DUPs.

Finally, we compiled the frequency of variant callers among the top 10 merged 
pipelines. Among the combined pipelines (sorted by median F1 measure for DEL 
and INS), callers such as cuteSV (0.17–0.20), cuteSV2 (0.14–0.17), DeBreak (0.23–
0.27), and Sniffles2 (0.07–0.16) exhibited higher frequencies (Additional file 1: Fig. 
S23b). Moreover, the distribution of callers varied among the top 10 merged pipe-
lines for different SV types. Among the top 10 merged pipelines (ranked by median 
F1 score) for various SV types, cuteSV2 and SVIM were more frequently observed 
for detecting DEL (cuteSV2: 0.272, SVIM: 0.25). For INS variant detection, callers 
cuteSV, cuteSV2, and DeBreak had higher frequencies among the top 10 merged 
pipelines (cuteSV: 0.18, cuteSV2: 0.16, DeBreak: 0.17, Additional file  1: Fig. S23d). 
Additionally, callers SVIM (0.24) and SVision (0.23) displayed elevated frequencies 
for INV. In the case of DUP, callers cuteSV (0.18), cuteSV2 (0.19), and pbsv (0.18) 
exhibited higher frequencies in the top 10 merged pipelines (Additional file 1: Fig. 
S23d). Consequently, these callers with a high frequency among the top 10 merged 
pipelines should be given higher priority when considering pipeline combinations to 
enhance the performance of SV detection in TSG data.
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Discussion
In this study, we conducted a comprehensive performance assessment of 53 widely used 
SV detection pipelines. These pipelines involved five aligners and 12 callers, all based 
on TGS. Our comparative study addressed limitations in previous research, which often 
used limited TGS data or fewer pipelines. We also considered multiple important factors 
related to SV calling, including SV length, breakpoint deviation, genotyping accuracy, 
runtime, and memory consumption. Our findings offer valuable insights into detecting 
SVs in TGS data, helping researchers select appropriate pipelines. Some results from this 
study align with previous research. First, the relative performance of different pipelines 
shows moderate consistency across most simulated and real datasets. For example, the 
Spearman correlation of F1 values of pipelines’ performance ranged from 0.4 to 0.7 for 
most SV types across different sequencing platforms (Additional file 1: Fig. S24). How-
ever, there is a decline in precision and recall when comparing real data to simulated 
data. Similar observations were reported by previous studies [11, 27]. The complexity 
of SVs in real data may contribute to this decline, as real SVs tend to be more intricate 
than simulated ones. Second, most pipelines perform well in detecting DEL and INS (F1: 
0.80–0.92) but have lower performance for INV and DUP (F1: 0.6–0.7). The latest SV 
detection tool, SVision, can identify complex SVs directly [21]. In contrast, previous call-
ers may break down a complex SV into multiple simple types such as DEL, INS, INV, 
and DUP. Finally, in TGS, pipeline performance is not highly sensitive to SV size. The 
precision and recall of pipelines only show relatively mild changes when dealing with 
SVs of different lengths. This observation is generally consistent with conclusions from 
SV detection algorithms based on SGS [27].

Importantly, our study presents several notable findings compared to previous 
research [23, 26–28, 33, 47]. First, we reveal various biases in the length and position 
of SVs detected by different pipelines. Although most called SVs have small lengths and 
breakpoint deviations (less than 50 bp), the length and location of SVs are crucial param-
eters in certain tools for SV pathogenicity prediction and annotation [48–53]. We found 
that the original size of the SV influences the biases in called SV length and breakpoints, 
and these biases are more sensitive to callers than to aligners. Additionally, the degree 
of biases varies across different types of SVs. These biases may be attributed to sequenc-
ing errors, genomic complexity (repetitive sequences), the inherent complexity of SVs, 
the accuracy of aligners, and the SV signal processing methods used by callers [7, 10]. 
Furthermore, we evaluated the performance of pipelines for genotype calling in both 
simulated data and real family datasets. We found that cuteSV, cuteSV2, Sniffles2, SVi-
sion, and SVIM achieved smaller MIERs, ranging from approximately 2 to 7%, indicating 
more accurate genotype calling than other pipelines.

In our analysis of the performance of 53 pipelines, we found that callers contribute 
more to the variation in performance than aligners. In a pipeline, the aligner critically 
influences SV signals’ presence, location, and strength. However, the caller is essential 
for clustering SV signals, filtering signals, and identifying SV types, which are all cru-
cial for SV detection. This was confirmed when we merged results from multiple pipe-
lines. In our analysis of merging results based on callers and aligners, we found that the 
performance improvement was similar for both methods. However, combining multi-
ple pipelines based on different callers is more feasible considering runtime efficiency. 
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Additionally, when merging a small number of pipelines (e.g., two pipelines), using a 
union may be more effective than an intersection. In contrast, when merging more pipe-
lines, the intersection method is more reliable. This is likely because, when combining 
two pipelines using the union method, the number of correct SVs shared between the 
two pipelines is greater than the number of incorrect SVs. However, as the number of 
combined pipelines increases, the rate of incorrect SVs grows faster than that of correct 
SVs.

When analyzing the pipeline-combination results, we observed that both caller-based 
combinations (with aligner fixed) and aligner-based combinations can similarly improve 
performance. However, we also noted that the performance variability due to callers was 
greater than that due to aligners among the 53 individual pipelines. This difference may 
stem from the greater variability among the twelve callers compared to the five aligners 
in the 53 pipelines. Thus, the choice of callers leads to greater performance variability in 
pipelines than the choice of aligners. Despite this, when merging results based on callers 
and aligners, we selected combinations from the top 10 performing pipelines, exclud-
ing those associated with weaker callers. This selection resulted in similar performance 
improvements when comparing the caller-based to the aligner-based combination 
results. Nevertheless, considering computational storage and time constraints, merging 
multiple pipelines based on different callers is more feasible. Additionally, when merging 
a small number of pipelines (e.g., two pipelines), using a union method might be more 
effective than an intersection method. Conversely, the intersection method is more reli-
able for merging more pipelines. This is likely because, when combining two pipelines 
using the union method, the number of correctly identified SVs shared between the two 
pipelines is greater than the number of incorrect SVs. However, as the number of com-
bined pipelines increases, the growth rate of incorrect SVs exceeds that of correct SVs.

Our study has several areas that need improvement. First, due to the lack of bench-
mark datasets for DUP, INV, and TRA in real data, evaluating pipeline performance for 
these SV types only based on simulated data may introduce bias. For example, in real 
data, the detection performance for DEL and INS variants by the pipelines is approxi-
mately 10% lower than in simulated data. Additionally, the datasets used in our experi-
ments might be limited in scale and representativeness. Due to resource constraints, we 
only utilized a few publicly available datasets, which might restrict the generalizability 
of our findings. Future research should incorporate larger and more diverse datasets to 
enhance the reliability and generalizability of the results.

Conclusions
To our knowledge, this study represents the most extensive analysis of genomic SV pipe-
lines based on TGS data to date. Our evaluation demonstrates that the choice of the 
caller is a critical factor influencing the accuracy of SV detection pipelines more than 
the choice of the aligner. In our comparison, three callers—cuteSV2, DeBreak, and SVi-
sion—performed the best. Regarding computational resources, Sniffles2 exhibited the 
lowest memory usage and fastest processing speed, making it highly suitable for large-
scale population studies. We also found that merging SVs identified by multiple pipelines 
using the aligners pbmm2 and winnowmap significantly improves accuracy compared 
to other aligners. However, we noted that the genotype accuracy of SVs in TGS still 
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requires improvement despite the higher recall and precision observed in SV detection 
pipelines (e.g., minimap2-cuteSV2, winnowmap-NanoVar, and winnowmap-Sniffles2). 
Additionally, the ranking of specific pipelines highly depends on various factors, such 
as specific SV types, deviations, and genotyping accuracy, indicating that no universally 
best pipeline exists. To aid in selecting top-performing pipelines from different perspec-
tives, we have summarized the rankings and performance metrics into a comprehensive 
online table for flexible queries (http:// pmglab. top/ SVPip eline sRank ing).

Methods
SV benchmark datasets

We used Visor software [42] to simulate reads based on the GRCh38 reference genome. 
First, we used the HACk module in the Visor software to generate genome haplo-
types, including virtual SV records. Next, we used the LASeR module to select the 
corresponding error_model and qscore_model to generate reads for long reads for dif-
ferent platforms (model parameters: ONT10.4: nanore2023; ONT9.4: nanore2020; CLR: 
pacbio2016; CCS: pacbio2021).

For the analysis of real data reads, we utilized the HG002 family pedigree data (HG002 
[son], HG003 [father], HG004 [mother]) comprising ONT, CLR, and CCS technologies 
sourced from the NCBI Ashkenazim Trio dataset [54]. Additionally, the HG005 fam-
ily pedigree data [54] (HG005 [son], HG006 [father], HG007 [mother]), which includes 
ONT, CLR, and CCS technologies, was sourced from the NCBI Chinese Trio database. 
The ONT and CLR data for the NA12878 sample were sourced from NCBI references 
[55–58]. We also incorporated samples HG00096 (ONT, CCS) and HG00512 (ONT, 
CCS, CLR) from the Human Genome Structural Variation Consortium (HGSVC) data-
base [31]. To assess the impact of sequencing depth on SV detection, we established four 
sequencing depths: 5 × , 10 × , 15 × , and 25 × .

SV benchmark construction for the samples relied on public datasets. For the HG002 
sample, DEL and INS variants, along with high-confidence regions, were sourced from 
the GIAB database [29]. Subsequently, using LiftOver, we converted the HG002’s hs37d5 
version SV benchmark and high-confidence regions to the GRCh38 reference. For the 
CHM13 sample, DEL and INS variants were sourced from the human pangenomics 
database [59]. Similarly, DEL and INS variants for samples HG00096, HG00512, and 
NA12878 were obtained from the HGSVC database [60]. For all SV benchmarks, we 
retained only SV records located on chromosomes 1–22, X, and Y.

Pipeline construction and SV detection

We generated alignment indexes for the GRCh38 human genome using aligners. The 
pipelines were constructed using aligners and callers, with most parameters set to 
default values. The unified parameters for callers were set as follows unless specifically 
stated: SV length ≥ 30 and minimum support read number ≥ 2 (see supplementary mate-
rials for more details). Preliminary experiments were conducted on TGS datasets using 
the following server environment: 4*Intel(R) Xeon(R) Gold 6148 CPU @ 2.40  GHz, 
Memory: 1007G, Hard disk storage: 328 T. These experiments aimed to assess the feasi-
bility of pipelines and eliminate slow and infeasible ones. The pipelines that passed the 

http://pmglab.top/SVPipelinesRanking
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assessment were defined as rules, and we utilized Python to generate analysis scripts for 
SV detection in the datasets (https:// github. com/ liuz- bio/ SVPip eline sEval uation. git).

SV call set filtering

The variation in the output file formats of different callers poses a challenge when com-
paring pipelines. To mitigate this issue, we standardized the VCF file formats of call-
ers by selectively extracting and formatting essential SV record information, including 
CHROM, POS, END, SVTYPE, SVLEN, SUPPORTREADS, and GT. Notably, SVision 
exhibits a more sophisticated ability to identify SV types [21]. In real data, SVision often 
presents a combination of multiple simple SVs, such as DEL + DUP, DEL + INV + DUP, 
and INS + tDUP. We decomposed these complex SV combinations into simple types for 
further evaluation, including DEL, INS, DUP, and INV.

Moreover, if SV records from different callers have “DUP” in the SVTYPE field, they 
are considered duplications. On the other hand, because some callers might classify 
DUP as INS, we merge DUP and INS as INS for evaluation, labeled as DUP_INS. Our fil-
tering criteria retained only variants marked as “PASS” in the “FILTER” field (In SVision, 
the “FILTER” field does not use “PASS”; we choose “Covered” as the “PASS” record.), 
with a minimum support read number of 2 and genotype of alternative alleles. We cre-
ated separate VCF files for different SV types and minimum support read number ranges 
(2–20), facilitating further evaluation and analysis.

Pipeline evaluation

We employed Truvari [39] to evaluate the accuracy, recall, and F1 score of pipelines 
across different SV types and their performance regarding varying SV sizes and mini-
mum support read numbers. We generated a BED file for each SV benchmark set 
covering a 500 bp range upstream and downstream of each SV, which we defined as 
high-confidence regions. We then compared the pipeline SVs within these high-con-
fidence regions to the benchmark SVs. Using Truvari [39], we computed the accuracy, 
recall, and F1 scores for DEL, INS, INV, DUP, and DUP_INS SV types. In the case of 
translocations, SVs detected by the pipeline meeting the conditions of Eq. 1 were con-
sidered true positive (TP) calls at the breakpoint level; otherwise, they were classified as 
false positives (FP). A ground benchmark SV was labeled as a false negative (FN) if no 
SV call satisfied Eq. 1, following the method proposed by Jiang et al. [11]. Furthermore, 
we calculated accuracy, recall, and F1 score for BND based on Eqs. 2–4. Additionally, 
we merged the Truvari results with the “tp-base.vcf” and “tp-call.vcf” files using SUR-
VIVOR [61] to establish correspondence between the SV benchmark and pipeline SVs. 
By analyzing these correspondences, we computed the length and breakpoint deviations 
between SV benchmark and pipeline SVs. To further explore the impact of SV length 
on the accuracy, recall, F1 score, breakpoints, and length deviation of the pipelines, we 
categorized each SV type into five size gradients: 50–100 bp, 100–500 bp, 500 bp–1 kb, 
1–2.5 kb, and > 2.5 kb. We then evaluated the performance of the pipelines within each 
length range for each SV type. Moreover, we recognized the significance of the minimum 
supporting read number as a crucial factor influencing pipeline performance. Therefore, 
we categorized the SVs based on the “minimum supporting read number” for each SV 

https://github.com/liuz-bio/SVPipelinesEvaluation.git
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type within the pipeline, ranging from 2 to 20, to assess the performance of the pipelines 
across different minimum support read number for various SV types.

where “comp” refers to the pipeline, while “base” refers to the benchmark. “BK1,” “BK2,” 
“Chr1,” and “Chr2” represent breakpoints and chromosomes.

Prediction is defined as:

Recall is defined as:

F1 score is defined as:

Calculate the runtime and memory usage of aligners and callers

We used a sample HG002 with an average sequencing depth of 5 × for ONT, CLR, and 
CCS to assess aligners’ and callers’ runtime and memory consumption. Our computer 
setup included 2*AMD EPYC 7601 CPUs running at 2.2 GHz, 128 threads, and 224 GB 
of memory. Callers and aligners utilize the maximum number of available threads dur-
ing runtime if they support multithreading. We used the Linux command “/usr/bin/time 
-o < output > -v < aligner/caller command > ” to track the memory usage (maximum resi-
dent set size) and execution time (elapsed wall clock time). Each command was repeated 
three times to collect data.

Mendelian error rate calculation

Children primarily inherit SVs from their parents, with minimal de novo SVs [32, 62, 63]. 
A comprehensive study involving 2396 families based on SGS data revealed a de novo 
structural mutation rate ranging from 0.160 to 0.206 events per genome [64]. Therefore, 
pipeline performance and genotype accuracy can be evaluated by analyzing Mendelian 
errors in SVs called among family members. In our assessment, we utilized datasets 
from families (HG002, HG003, HG004 with ONT; HG005, HG006, HG007 with ONT, 
CLR, and CCS) to gauge the level of MIER for a pipeline. We employed the “merge” 
function of the SURVIVOR tool to combine SV records of fathers, mothers, and children 
within each family based on specific pipeline parameters (minimum number of support-
ing caller: 1, max distance between breakpoints: 100). We selected all SV records with 
several supporting callers of 3 and non-empty sample genotypes from the merged SV 
records. Any SV record where the parent’s genotypes did not match the child’s genotype 

(1)

compBK1 − baseBK1 ≤ 1kb

compBK2 − baseBK2 ≤ 1kb
compchr1 = basechr1
compchr2 = basechr2

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
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according to Mendelian inheritance laws was classified as a Mendelian error. We used 
the minimum supporting read number as a filtering parameter to examine its impact 
on the MIER level. Specifically, for the MIER calculation, we considered only SVs where 
the minimum supporting read number for both the child and the parents exceeded the 
threshold ranging from 2 to 20.

Multi‑pipeline results merge

Based on the pipeline evaluation results, we selected 41 pipelines with superior perfor-
mance for result-merging analysis, comprising nine callers (cuteSV, cuteSV2, DeBreak, 
NanoVar, pbsv, Sniffles, Sniffles2, SVIM, SVision) and five aligners (LRA, minimap2, 
NGMLR, pbmm2, winnowmap). Initially, we standardized the results of the 41 pipe-
lines by selectively extracting and formatting the SV record information. We then con-
structed combination schemes based on caller combinations (with aligner fixed) and 
aligner combinations (with caller fixed). Next, we divided the combination schemes 
based on whether SURVIVOR was used to merge multi-pipeline results using the union 
method (“minimum number of supporting caller: 1”) or the intersection method (“mini-
mum number of supporting caller: 2”). SURVIVOR’s parameter “max distance between 
breakpoints” was set to 500 bp. We set the number of combined pipelines to 2, 3, and 4. 
This resulted in 12 combination schemes in total: 2 (caller/aligner) * 2 (“minimum num-
ber of supporting caller”: 1 or 2) * 3 (number of pipelines: 2, 3, 4), labeled as < caller/
aligner >  < 2,3,4 >  < Union/Intersection > . We used SURVIVOR to merge VCF output 
files from multiple callers. When merging VCF files from multiple pipelines, SURVI-
VOR consolidated SVs within the specified “max distance between breakpoints” range 
into a single SV and used the “minimum number of supporting caller” parameter to 
determine whether the merged SV met the criteria for output. For example, when merg-
ing SV results from 3 pipelines with “minimum number of supporting caller” set to 2, an 
SV record was retained if at least two pipelines supported it; otherwise, it was removed 
from the output. We evaluated the merged results on both real and simulated data. The 
SV (DEL, INS) benchmarks for real data were derived from public datasets. The merg-
ing and evaluation of multi-pipeline results were conducted separately for each SV type. 
After evaluation, we ranked the combined pipelines for real and simulated data based 
on the median F1 scores across different samples and sequencing data types. The top 
10 pipelines for each combination scheme were then collected for analysis. We used the 
Mann–Whitney U test to determine if there were significant differences in F1, recall, and 
precision between single pipelines and combined pipelines among the top 10 combina-
tions across different samples and sequencing data types. We also counted the number 
of significant combination pipelines and assessed the level of difference in F1, precision, 
and recall measures between real and simulated data for evaluation.
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