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ABSTRACT 27 

Messenger RNA (mRNA) therapeutics show immense promise, but their efficacy is 28 

limited by suboptimal protein expression. Here, we present RiboCode, a deep learning 29 

framework that generates mRNA codon sequences for enhanced protein production. 30 

RiboCode introduces several advances, including direct learning from large-scale 31 

ribosome profiling data, context-aware mRNA optimization and generative exploration 32 

of a large sequence space. In silico analysis demonstrate RiboCode’s robust predictive 33 

accuracy for unseen genes and cellular environments. In vitro experiments show 34 

substantial improvements in protein expression, with up to a 72-fold increase, 35 

significantly outperforming past methods.  In addition, RiboCode achieves cell-type 36 

specific expression and demonstrates robust performance across different mRNA 37 

formats, including m1Ψ-modified and circular mRNAs, an important feature for mRNA 38 

therapeutics. In vivo mouse studies show that optimized influenza hemagglutinin 39 

mRNAs induce ten times stronger neutralizing antibody responses against influenza 40 

virus compared to the unoptimized sequence. In an optic nerve crush model, optimized 41 

nerve growth factor mRNAs achieve equivalent neuroprotection of retinal ganglion 42 

cells at one-fifth the dose of the unoptimized sequence. Collectively, RiboCode 43 

represents a paradigm shift from rule-based to data-driven, context-sensitive approach 44 

for mRNA therapeutic applications, enabling the development of more potent and dose-45 

efficient treatments. 46 

  47 
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INTRODUCTION 48 

Messenger RNA (mRNA) therapy has emerged as a promising approach for treating 49 

diseases. This innovative therapeutic strategy harnesses the cell’s protein synthesis 50 

machinery to produce desired proteins encoded by the delivered mRNA1–3, leading to 51 

the application of mRNA therapies in various fields, such as vaccine development and 52 

protein replacement therapy4. The successful development and deployment of mRNA 53 

vaccines during the COVID-19 pandemic have further highlighted the transformative 54 

potential of this technology5. 55 

Despite the remarkable progress in mRNA vaccines, achieving efficient and 56 

consistent protein translation from delivered mRNA molecules remains a key challenge, 57 

particularly critical for protein replacement therapy where sustained, precise, and often 58 

higher levels of protein expression are required in specific cellular contexts. However, 59 

the biological instability of mRNA and the complex regulatory mechanisms governing 60 

mRNA translation in cells can lead to suboptimal protein expression6–8. Therefore, 61 

improving the expression of mRNA is a key challenge for enhancing the therapeutic 62 

efficacy and reducing the required dose of mRNA-based treatments. 63 

 An amino acid can be encoded by multiple synonymous codons, ranging from one 64 

to six codons per amino acid. Codon optimization is a strategy to improve protein 65 

expression by changing the synonymous codon of an mRNA molecule while 66 

maintaining the encoded amino acid sequence. The choice of synonymous codons can 67 

largely impact the efficiency of mRNA translation and the stability of the mRNA 68 

molecule6,7. For example, it has been shown that optimal codon usage can enhance 69 

ribosome engagement and increase translation elongation rates, ultimately leading to 70 

higher protein production8. Additionally, codon choice can influence mRNA stability, 71 

which is important as mRNAs are prone to degradation. The minimum free energy 72 

(MFE) of an mRNA, a computational indicator of its secondary structure stability, is 73 

often used to assess this aspect. A lower (more negative) MFE indicates a more stable 74 

secondary structure, as more energy would be required to disrupt the base pairing and 75 
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unfold the RNA6. Therefore, codon optimization is a critical step in the design of 76 

mRNA-based therapies to achieve maximal protein production, leading to better 77 

therapeutic efficacy. 78 

Computational tools have been developed for codon optimization, most for DNAs, 79 

employing various strategies to select optimal codons. Past methods rely on codon 80 

usage bias derived from highly expressed genes in a given species, such as codon 81 

adaptation index (CAI)9. These methods aim to mimic the codon usage patterns of 82 

efficiently translated endogenous mRNAs. More recently, LinearDesign has been 83 

developed for mRNA optimization, by increasing CAI and reducing MFE, to jointly 84 

optimize translation and mRNA stability6. LinearDesign uses a linear programming 85 

approach to explore a wider space of sequence variants compared to previous methods 86 

and showed superior performance over the previous codon optimization methods. 87 

Despite the development of the previous methods, several limitations hinder their 88 

effectiveness in consistently improving the protein expression of mRNA molecules. 89 

Firstly, the existing methods primarily rely on predefined sequence features, such as 90 

CAI, to guide codon selection. However, these metrics often fail to correlate with the 91 

experimentally measured protein expression levels10,11, indicating that they do not 92 

accurately capture the complex factors governing mRNA translation. Secondly, the 93 

existing methods do not adequately account for the activity of translational regulators 94 

that influence mRNA translation12. This lack of context-aware optimization may reduce 95 

the effectiveness of the optimized mRNA sequences in specific cellular environments. 96 

Furthermore, the existing methods explore a limited space of codon sequences due to 97 

computational constraints and the reliance on predefined rules. This restricted search 98 

space may prevent the discovery of novel and highly optimized sequences that could 99 

potentially yield significant improvements in protein expression. 100 

Deep learning has achieved remarkable success in tasks such as image recognition, 101 

natural language processing, and protein structure prediction, where it has 102 

outperformed conventional algorithms by learning complex patterns and relationships 103 
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from vast amounts of data13,14. In the context of mRNA codon optimization, a deep 104 

learning approach may enable the model to capture the complex interplay between 105 

codon usage and cellular context, without relying on predefined rules. Moreover, deep 106 

learning models can explore a vast sequence space and discover novel patterns that may 107 

not be apparent to human experts or accessible through traditional optimization 108 

methods15. This ability has been exemplified in the field of protein engineering, where 109 

deep learning has been used to design novel protein sequences with improved stability, 110 

binding affinity, and catalytic activity16–18. For the codon optimization problem, if we 111 

assume an average of three synonymous codons per amino acid, the number of possible 112 

codon sequences for a 500 amino acid protein would 3500, which is more than 10238. 113 

This number is much larger than the estimated number of atoms (~1080) in the 114 

observable universe19. A deep learning-based codon optimization method could 115 

potentially generate novel and highly optimized mRNA sequences by exploring the 116 

immense sequence space. 117 

Massive parallel reporter assays (MPRA) are commonly used to study the effects 118 

of regulatory sequences on gene expression20. However, it is not suitable for optimizing 119 

coding sequences due to the short sequence limitation, which is generally less than 300 120 

base pairs, for high-throughput DNA synthesis. Additionally, MPRA experiments often 121 

rely on artificial reporter constructs and may not fully recapitulate the complex 122 

regulatory landscape of endogenous mRNA molecules. Ribosome profiling (Ribo-seq) 123 

is a powerful experimental technique that provides a snapshot of actively translating 124 

ribosomes on mRNA molecules, offering a direct and quantitative measurement of 125 

translation at a transcriptome-wide scale21,22. By training a deep learning model on 126 

Ribo-seq data from diverse codon sequences in diverse cell types and conditions, we 127 

may capture the complex relationship between codon usage and translation which 128 

occurs in the natural cellular context. However, such attempts have been lacking so far. 129 

In this study, we present RiboCode, a deep learning model for mRNA codon 130 

optimization that enhances protein expression by directly learning complex relationship 131 
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of mRNA codon sequences to their translation level from large-scale Ribo-seq data. 132 

Our prediction model demonstrated robust performance, while analysis of RiboCode’s 133 

optimization strategies revealed a complex interplay between sequence characteristics 134 

and translation. In vitro experiments showed up to a 72-fold increase in protein 135 

expression, significantly outperforming past methods. RiboCode also achieved cell-136 

type specific expression, and maintained robust performance across unmodified, m1Ψ-137 

modified, and circular mRNA formats. In vivo, optimized influenza virus 138 

hemagglutinin (HA) mRNA induced approximately ten times stronger neutralizing 139 

antibody responses in mice, while optimized nerve growth factor (NGF) mRNA 140 

achieved equivalent neuroprotection of retinal ganglion cells at one-fifth the dose in an 141 

optic nerve crush mouse model. This data-driven approach to codon optimization 142 

advances our understanding of mRNA translation and facilitates the development of 143 

more effective mRNA therapeutics. 144 

RESULTS 145 

RiboCode is a Deep Learning Framework for mRNA Codon Optimization 146 

RiboCode is a deep learning-based framework for optimizing mRNA codon sequences 147 

to enhance protein production. It integrates three key components: a translation 148 

prediction model, an MFE prediction model, and a codon optimizer that explores and 149 

optimizes codon choices guided by the prediction models (Figure 1a). 150 

The translation prediction model estimates the translation amount of a given codon 151 

sequence by learning the translational expression of diverse mRNA sequences from 152 

Ribo-seq experiments (Figures 1b and S1). In contrast to previous tools that rely on 153 

optimizing predefined features such as CAI, our deep learning model automatically 154 

extracts relevant features by training on 320 paired Ribo-seq and RNA sequencing 155 

(RNA-seq) datasets from 24 different human tissues and cell lines, encompassing 156 

translation measurements of over 10,000 mRNAs per dataset23,24. In addition, the model 157 

incorporates not only codon sequences but also mRNA abundances and cellular context  158 



7 

 

that is presented by gene expression profiles from RNA-seq, via a multi-head attention 159 

mechanism. This integrative approach enables the prediction of mRNA translation by 160 

jointly considering these important factors influencing translation. 161 

To address mRNA stability, we developed an MFE prediction model. Current MFE 162 

prediction tools, such as RNAfold25 and Linearfold26, use dynamic programming, 163 

which is non-differentiable and incompatible with our codon optimizer described below. 164 

Our MFE model employs a deep neural network architecture and undergoes an iterative 165 

optimization process, to simultaneously improve its predictive capability and optimize 166 

sequences for lower MFE values (Figure S2). 167 

The codon optimizer of RiboCode begins with the original codon sequence of a 168 

given protein (Figure 1c). The prediction models then predict a fitness score for this 169 

sequence. Using a gradient ascent optimization approach based on activation 170 

maximization (AM)27, the optimizer adjusts the codon distribution to maximize the 171 

fitness score. A synonymous codon regularizer ensures that only synonymous codons 172 

encoding the same amino acids as the original sequence are considered, preserving the 173 

protein’s amino acid sequence. Through iterative cycles of sequence generation, 174 

prediction, and optimization, the system produces codon sequences with improved 175 

properties. RiboCode can optimizes mRNA translation, stability or both, by interfacing 176 

with both the translation and MFE models, which uses a parameter w of 0 to optimize 177 

translation only, w of 1 to optimize MFE only and, a value between 0 to 1 to jointly 178 

optimize both. 179 

By combining data-driven predictions with high-throughput sequence generation, 180 

RiboCode overcomes limitations of conventional heuristic approaches. It enables the 181 

exploration of a vast mRNA codon space, potentially uncovering optimized sequences.  182 

Evaluation of Translation Prediction Model 183 

We first evaluated the RiboCode’s performance and generalizability using three cross-184 

validation datasets: “new gene”, “new environment”, and “new gene in new 185 
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environment”, which represented unseen genes, unseen cell types and unseen genes in 186 

unseen cell types during training (Figure S3). The model achieved a coefficient of 187 

determination (R2) of 0.81, 0.89, and 0.81 for the three datasets, respectively (Figures 188 

2a), indicating its robustness and ability to generalize. 189 

To understand the relative importance of the three model inputs, we performed 190 

ablation analysis, revealing that mRNA abundances were the most important 191 

contributor to the prediction of translation (Figure 2b, Table S2), in agreement with an 192 

early study of yeast translation found that the most predictive variable for translation 193 

was the mRNA expression of the gene22. The incorporation of codon sequences lifted 194 

the R2 by 0.15, and further inclusion of cellular environment improved the R2 by 0.06. 195 

The ablation analysis demonstrated that all the inputs contributed to predicting mRNA 196 

translation. 197 

We next investigated whether our model captured complex sequence features 198 

beyond common translation-related metrics. While our model learned relevant 199 

sequence features directly from the raw codon sequences, we tried to include common 200 

translation-related sequence metrics including CAI, MFE, and codon frequencies as 201 

additional model inputs and found these metrics did not improve prediction accuracy 202 

(Table S1). This suggested that the model could capture the sequence patterns that were 203 

predictive of translation, beyond these sequence metrics. 204 

We explored alternative approaches to incorporating cellular context information. 205 

We directly incorporated the meta information of Ribo-seq datasets into the model, 206 

including cell types and experimental conditions and found it did not improve the 207 

performance (Table S1). This indicated that the gene expression profiles used in the 208 

model were an effective proxy to capture the relevant cellular environment influencing 209 

mRNA translation. 210 

To validate the model's ability to capture cellular environment information, we 211 

leveraged a proteomics dataset from GTEx28, which measured the relative protein 212 

expression of genes across 32 human tissues. We predicted the mRNA translation levels 213 
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of 9,582 genes in these tissues. Notably, the predicted translation levels of 6,805 out of 214 

9,582 genes across these tissues (71%) were significantly correlated with their 215 

measured protein levels (p-value < 0.05 after False Discovery Rate (FDR) adjustment, 216 

Pearson's correlation), with a median correlation value of 0.56 (Figure 2c).  217 

To exclude random correlations, we conducted a control experiment to calculate 218 

the correlations with shuffled cellular environment profiles for 1,000 times. With 219 

randomized data, only 0.02% of genes showed significant correlations, compared to 71% 220 

with the correct environment. The median correlation coefficients with shuffled 221 

environments were near zero and significantly lower than those with the correct 222 

environment (p < 0.0005, one-sample t-test, Figure 2d). These results demonstrated that 223 

our model effectively captured cellular context information. 224 

Finally, we investigated the positional importance of coding sequences in 225 

translation prediction. We analyzed the importance of each nucleotide position for the 226 

model's prediction. The results showed that the coding sequences close to the translation 227 

start site (TSS) were more important (Figure 2e). This is consistent with a general 228 

knowledge that codons near TSS had a greater impact on protein synthesis, by 229 

influencing translation initiation8. 230 

Overall, the data-driven approach of RiboCode enabled robust predictive 231 

capabilities with biological relevance by learning important sequence patterns directly 232 

from the Ribo-seq data. 233 

RiboCode’s Optimization Strategies for Enhanced mRNA Translation 234 

Having established the efficacy of our translation prediction model, we next explored 235 

how this model could be leveraged to generate sequences with enhanced translation 236 

potential. We first generated codon sequences of Gaussia luciferase (Gluc) (Figure S4). 237 

T-distributed stochastic neighbor embedding (t-SNE) indicated that the model 238 

established an association between the sequence space and translation levels. The red 239 

area in the upper right showed that a wide space of high translation sequences was 240 

explored (Figure 3a). We next explored how RiboCode optimized translation and 241 



10 

 

stability independently or jointly. A widely used Gluc sequence (MF882921.1) was 242 

used as a reference for comparison, which had a predicted translation level of 5.9 and 243 

an MFE value of -216 (Figure 3b). By optimizing the sequence for translation (w=0), 244 

the predicted translation level increased to around 25. On the other hand, codon 245 

sequences optimized for MFE (w=1) reduced the MFE from -150 kcal/mol to around -246 

350 kcal/mol, with a similar translation level to the reference. With joint optimization 247 

(0<w<1), RiboCode explored a wider sequence space, achieving both enhanced 248 

translation and reduced MFE. 249 

To understand RiboCode’s optimization strategy, we analyzed codon usage patterns 250 

between generated sequences with enhanced and reduced translation, as well as 251 

between high- and low-translated endogenous sequences. We found that codons 252 

preferentially used in highly translated endogenous sequences were also favored in 253 

RiboCode-generated sequences with enhanced translation. Notably, the differences in 254 

codon usage between RiboCode’s enhanced and reduced translation sequences were 255 

more pronounced than those observed between high- and low-translated endogenous 256 

sequences (Figures 3c). To assess the generalizability of these findings, we extended 257 

our analysis to multiple genes across various cell types. Consistently, we observed the 258 

same pattern of biased codon usage in all the cases (Figure S5). This suggests that 259 

RiboCode not only mimics but amplifies the codon usage patterns of efficiently 260 

translated endogenous mRNAs, potentially leading to even greater improvements in 261 

translation. 262 

We next examined how RiboCode utilized sequence features during generation and 263 

optimization.  Analysis of sequence features across different mRNAs revealed complex 264 

and variable relationships with translation (Figures 3d and S6). Notably, highly 265 

translated mRNAs generally showed an increase in uridine content (U%), which may 266 

reduce secondary structure formation and facilitate smoother ribosome movement 267 

during translation7. Additionally, these mRNAs mostly exhibited a decrease in Effective 268 

Number of Codons (ENC), suggesting a selection against rare or inefficient codon pairs 269 
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to enhance translation29. Variations in CAI, Codon Pair Bias (CPB), GC content (GC%) 270 

and MFE across different mRNAs suggested that while these features could influence 271 

translation, their impact might be more mRNA- or context-dependent.  272 

In short, these findings highlight RiboCode’s ability to capture complex sequence-273 

translation relationships, offering a sophisticated approach to mRNA optimization that 274 

goes beyond traditional codon optimization metrics. 275 

Experimental Validation Demonstrates RiboCode’s Versatility and Efficacy 276 

While our in silico analyses demonstrated the potential of RiboCode to optimize codon 277 

sequences, we next sought to validate these findings experimentally. We first validated 278 

RiboCode’s ability to optimize codon sequences for enhanced protein expression. For 279 

Gluc, protein expression levels of all RiboCode-optimized sequences showed a 280 

dramatic enhancement in protein production compared to the reference, with up to a 281 

72-fold increase (RD2) (Figure 4a, Table S3), which also significantly outperformed 282 

the LinearDesign-optimized sequences (p-value=0.019, one-sided Mann-Whitney U 283 

test). The predicted translational levels showed a strong positive correlation with the 284 

experimentally measured protein levels, although the p-value was slightly above 0.05 285 

(Correlation coefficient=0.71, p-value=0.077, Pearson’s correlation, Figures 4b and S7). 286 

In contrast, the CAI showed negative correlation with the experimental measurements 287 

(Correlation coefficient=-0.15), indicating that CAI is not a reliable predictor of protein 288 

expression levels in this context and may even lead to counterproductive optimization 289 

strategies. We additionally optimized another commonly used reporter gene, firefly 290 

luciferase (Fluc). The experimental validation showed a 17-fold increase in protein 291 

expression compared to the WT Fluc (Figure S8). 292 

We next experimentally evaluated RiboCode’s ability to design mRNAs with cell 293 

type specificity. We designed Gluc mRNA variants optimized for preferential 294 

expression in HEK293T cells and compared expression in HEK293T cells to both A549 295 

and ARPE19 cells. For HEK293T vs A549, RiboCode predicted expression ratios 296 

ranging from 1.65 to 1.80, which closely matched experimental ratios of 1.35 to 1.73 297 
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(Figure 4c, Table S4). In the HEK293T vs ARPE19 comparison, while predicted ratios 298 

were around 1.41 for all variants, experimental results showed higher ratios between 299 

2.57 and 3.13 (Figure 4d, Table S5). All designed mRNAs consistently demonstrated 300 

preferential expression in HEK293T cells across both comparisons. These results 301 

showed RiboCode’s capacity to capture cellular environment and design mRNAs with 302 

enhanced expression in desired cell types. 303 

Modified mRNAs, such as those with 1-methylpseudouridine (m1Ψ) modifications, 304 

and circular RNAs are used in mRNA therapy instead of unmodified mRNAs due to 305 

their improved stability and reduced immunogenicity3,7,30. We therefore assessed the 306 

effectiveness of RiboCode in enhancing translation in these alternative mRNA forms. 307 

Among the four codon variants, m1Ψ-modified RD2 and RD4 showed higher protein 308 

expression levels compared to the reference, with up to a 4.6-fold higher expression at 309 

48 hours post-transfection (Figure 4e, Table S3). Moreover, all four RiboCode-310 

generated codon variants in the circular form outperformed the reference (Figure 4f, 311 

Table S3). These results demonstrate that RiboCode optimization enhances protein 312 

production in both m1Ψ-modified and circular mRNAs, illustrating its reliability and 313 

versatility. 314 

These experimental validations demonstrate RiboCode’s ability to significantly 315 

enhance protein expression, optimize for specific cell types, and improve translation 316 

across various mRNA forms, highlighting its potential as a powerful tool for mRNA 317 

therapeutic development. 318 

RiboCode Enhances Immunogenicity of mRNA-based Influenza Vaccines 319 

Having established the robustness of our optimization approach, we next aimed to 320 

demonstrate its practical application in the development of mRNA-based vaccines. 321 

Influenza A viruses are responsible for causing respiratory infections, leading to annual 322 

epidemics that result in millions of human infections worldwide31. HA, a glycoprotein 323 

found on the surface of influenza A viruses, plays a crucial role in the viral infection 324 

process and is the primary target for the development of influenza vaccines. Although 325 
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most of the vaccines were developed using inactivated influenza viruses, mRNA-based 326 

influenza vaccines are currently actively developed32. 327 

To enhance the expression of HA and potentially improve the efficacy of HA-based 328 

vaccines, we optimized the HA coding sequence. Two RiboCode-optimized HA 329 

sequences showed enhanced in vitro protein expression compared to the WT (Figure 330 

5a). Particularly, RD1 showed substantial improvement compared to the WT and 331 

LinearDesign-optimized sequences. In addition, RD1 exhibited considerably higher 332 

expression levels compared to the WT sequence in both m1Ψ-modified and circular 333 

mRNA forms (Figures 5b and 5c). These results again highlight the robustness and 334 

versatility of the RiboCode-optimized sequence. 335 

We further assessed the in vivo immunogenicity induced by the optimized sequence， 336 

for both the prime and boost responses, where split virus influenza vaccine (SV) was 337 

served as the positive control (Figure 5d). The RD1 sequence induced significantly 338 

stronger neutralizing antibody responses, measured by the micro-neutralization (MN) 339 

titers, compared to the WT sequence and SV. For the prime response, RD1 elicited 340 

significantly higher MN titers compared to WT, with approximately 4.4-fold increase 341 

(Figure 5e, mean MN titers: RD1=2,560, WT=580; p-value=0.008, one-sided Wilcoxon 342 

test). The difference was more pronounced for the boost response, with RD1 inducing 343 

a 9.6-fold increase in MN titers compared to WT (Figure 5e, mean MN titers: 344 

RD1=83,200, WT=8,640; p-value=0.002, one-sided Wilcoxon test). These results 345 

demonstrated that the RiboCode-optimized sequence significantly enhanced both the 346 

initial and boosted immune responses. This dramatic improvement in immunogenicity 347 

underscores RiboCode’s potential to enable more effective vaccines with lower doses. 348 

Enhanced Protein Expression and Therapeutic Efficacy with optimized NGF 349 

mRNA 350 

Having demonstrated the efficacy of RiboCode in optimizing mRNA for vaccine 351 

development, we next explored its potential in protein replacement therapy. We focused 352 
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on NGF as a promising candidate for treating glaucoma, which is a leading cause of 353 

irreversible blindness33 and causes death of retinal ganglion cells (RGCs).  Our recent 354 

study demonstrated that mRNA-based NGF therapy provided robust neuroprotection 355 

for RGCs in an optic nerve crush (ONC) mouse model34. 356 

To improve the neuroprotection efficacy, we optimized the codon sequences of 357 

human NGF mRNA. The protein expression levels of three RiboCode-designed 358 

sequences were more than 2-fold higher compared to that of the WT while the 359 

LinearDesign sequences did not show improvement (Figure 6a). We further assessed 360 

the best performed sequence (RD3) in both m1Ψ-modified mRNA and circular mRNA 361 

forms. Notably, with m1Ψ-modification, RD3 achieved 8.4- and 9.8-fold higher protein 362 

levels compared to the WT at 24h and 48h, respectively (Figure 6b). With mRNA 363 

circulation, RD3 also achieved a more than 2-fold higher expression than the WT at 364 

both 24h and 48h (Figure 6c). These results again demonstrated the robustness of 365 

RiboCode-optimized sequences across different mRNA forms. 366 

Based on its superior performance in initial in vitro tests, we selected RD3 for 367 

further in vivo studies. To evaluate the in vivo expression of optimized NGF mRNA, 368 

we intravitreally administered both the RD3 and WT sequences. Each mRNA was 369 

m1Ψ-modified and encapsulated within LNP and administered at two doses: 100 ng/μl 370 

and 500 ng/μl. The RD3 sequence demonstrated significantly higher NGF protein 371 

expression compared to the WT sequence at both doses. Remarkably, RD3 at 100 ng/μl 372 

achieved even slightly higher expression than WT at 500 ng/μl (Figure 6d). 373 

We then investigated the therapeutic potential of optimized NGF mRNA using an 374 

ONC mouse model, which mimics RGC injury and resulted in significant RGC loss 375 

(Figures 6e-g). Treatment with NGF mRNA showed clear neuroprotective effects, 376 

preserving more RGCs after injury. Notably, mice treated with 100 ng/μl RD3 showed 377 

significantly higher RGC counts than those treated with the same dose of WT mRNA 378 

(Figures 6h and 6i, p-value=0.0002, one-sided Wilcoxon test). Moreover, these counts 379 

were comparable to those in mice treated with 500 ng/μl WT mRNA. 380 
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To sum, the optimized sequence exhibited superior protein expression both in vitro 381 

and in vivo, while maintaining therapeutic efficacy at one-fifth the dose of the 382 

unoptimized sequence. These results demonstrated the effectiveness of RiboCode in 383 

optimizing NGF mRNA for the treatment of RGC injury. 384 

DISCUSSION 385 

In this study, we present RiboCode, a novel deep learning-based framework for mRNA 386 

codon optimization. The generative optimization framework, guided by the deep 387 

learning prediction model, enables the efficient exploration of the immense space of 388 

possible codon sequences. This allows RiboCode to discover novel, highly optimized 389 

sequences that may not be accessible to traditional optimization methods. RiboCode-390 

optimized sequences demonstrate superior performance in various mRNA formats, 391 

including unmodified, m1Ψ modified, and circular mRNAs, highlighting its broad 392 

applicability in the rapidly evolving field of mRNA therapeutics. In vitro and in vivo 393 

experiments using the optimized sequences of therapeutically relevant proteins show 394 

substantial enhancements in protein expression compared to the unoptimized sequences. 395 

These improvements further translate into increased therapeutic efficacy, as 396 

demonstrated by significantly enhanced immune responses to an optimized influenza 397 

vaccine and markedly improved RGC protection in mice with optic nerve injury. 398 

The superior performance of RiboCode can be attributed to several factor. Firstly, 399 

RiboCode’s deep learning model learns directly from diverse nature sequences with 400 

translation measurements, enabling it to capture complex patterns of codon sequences 401 

for mRNAs with high translation level. In contrast, previous approaches, such as 402 

LinearDesign, relies on limited sequence features, which may not fully capture the 403 

intricacies of mRNA translation. Second, our model considered the cellular contexts of 404 

mRNA translation whereas the previously codon optimization tools such as CAI-based 405 

methods or LinearDesign did not. Third, RiboCode’s generative optimization 406 

framework allows it to explore a large sequence space and to discover novel, highly 407 

optimized sequences that may not be accessible to the traditional approaches. 408 
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The findings of our study have important implications for the field of mRNA 409 

therapeutics. Firstly, RiboCode can generate and evaluate a vast number of novel codon 410 

combinations. This capability allows RiboCode to optimize mRNA sequences beyond 411 

the limitations of evolutionary constraints, potentially uncovering more efficient codon 412 

usage patterns not found in natural transcripts. By transcending natural sequence 413 

limitations, RiboCode represents a significant advancement in mRNA optimization, 414 

potentially leading to levels of protein expression and therapeutic efficacy that surpass 415 

what can be achieved with naturally evolved sequences. Second, by substantially 416 

increasing protein production, the optimized sequences can improve the potency and 417 

reduce the required dose of mRNA-based treatments, potentially mitigating side effects 418 

and enhancing patient outcomes. This is particularly relevant for applications such as 419 

protein replacement therapies, where achieving high levels of protein expression is 420 

crucial for therapeutic success. Third, RiboCode’s robustness and versatility across 421 

different mRNA formats, including modified and circular mRNAs, expand the range of 422 

therapeutic applications for which it can be employed. As the field of mRNA 423 

therapeutics continues to evolve and new mRNA formats are developed to enhance 424 

stability, reduce immunogenicity, and improve delivery30,35, RiboCode’s ability to 425 

optimize sequences for these diverse formats will be invaluable.  426 

While our study demonstrates the significant potential of RiboCode in optimizing 427 

mRNA codon sequences for enhanced protein expression and therapeutic efficacy, there 428 

are several limitations to address and future directions to explore. Firstly, we focused 429 

exclusively on optimizing the codon sequences of mRNA molecules to enhance protein 430 

expression in this study. While this approach yielded significant improvements in 431 

protein production and therapeutic efficacy, our future work will expand upon this 432 

foundation by jointly optimizing both the untranslated regions and codon sequences. 433 

By addressing both coding and non-coding regions, we will develop a more 434 

comprehensive optimization strategy that maximizes the potential of mRNA-based 435 

therapeutics across a wider range of applications and cellular contexts. Second, 436 
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although we attempted to incorporate mRNA structure-related features such as MFE 437 

into our model, we found no significant improvement in prediction accuracy. However, 438 

this does not conclusively rule out the importance of mRNA structure in translation. 439 

Future directions of RiboCode could benefit from more sophisticated integration of 440 

structural information, such as local secondary structures or ribosome pause sites. 441 

Finally, future studies could expand the validation to more advanced preclinical models, 442 

optimizing a broader range of genes and proteins, incorporating additional optimization 443 

objectives, and elucidating the underlying mechanisms. 444 

In conclusion, RiboCode represents a paradigm shift from rule-based to data-driven 445 

mRNA optimization, potentially uncovering entirely new principles of efficient 446 

translation that were previously inaccessible. RiboCode will provide a versatile tool for 447 

researchers to maximize the potential of mRNA-based therapeutics, paving the way for 448 

more effective treatments in various medical applications. 449 
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 615 

Figure 1. Predictive and Generative Optimization of RiboCode. 616 

a. RiboCode contains three main components, a codon optimizer, a translation prediction model and 617 

an MFE prediction model. 618 

b. The framework of the prediction model for translation. The input includes codon sequences in 619 

one-hot encoding, corresponding mRNA abundances and, the cellular environment which is 620 

presented by vectors of gene expression profiles from RNA-seq. The model integrates these inputs 621 

using a multi-head attention mechanism. From the fused representations, a convolutional neural 622 

network extracts features and outputs the predicted translation level of mRNA. 623 

c. Iterative optimization of codon sequences. RiboCode predicts fitness of an original sequence 624 

(T=0), then uses activation maximization to generate optimized synonymous variants (T+=1). A 625 

synonymous regularizer maintains amino acid sequence. This process iterates until peak fitness is 626 

achieved. 627 

  628 
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 629 

Figure 2. Evaluation of the Translation Prediction Model. 630 

a. Experimentally measured translation levels by Ribo-seq versus predicted translation levels in the 631 

three validation datasets. Red lines denote the linear fit. 632 

b. Ablation analysis shows the contributions of the three inputs to the prediction model. The table 633 

below shows the ablation status of the inputs, with dots and crosses representing the presence and 634 

absence of corresponding elements, respectively. 635 

c. Comparison of protein measurements across 32 human tissues by mass spectrum and predicted 636 

translation levels from RiboCode. We calculated the Pearson’s correlation coefficient for all 9,582 637 

genes, of which 6,805 (71%) showed significant correlations (p-value < 0.05 after FDR adjustment 638 

for multiple testing). Red vertical line indicates the median of correlation coefficient. Light blue 639 

represents a significant correlation. Darker blue represents insignificance. 640 
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d. Median of Pearson’s correlation coefficients between protein level and predicted translation level 641 

with randomized environment input for 1,000 simulations. Only 0.02% of results were significant 642 

(p-value < 0.05 after FDR adjustment for multiple-testing).  643 

e. The importance of each nucleotide position for the translation prediction. The x-axis represents 644 

the nucleotide position from the TSS (translation starting site). Integrated Gradients attribution 645 

method was used to obtain the importance score for each nucleotide position (black dots).  The red 646 

line denotes the local polynomial regression fit.  647 

 648 

  649 
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 650 
Figure 3. Strategies of Enhanced Translation in Generated Sequences. 651 

a. Generation of Gluc codon sequences with low translation level (the upper left area) and high 652 

translation level (the upper right area) (w=0, Figure S4). T-SNE of codon sequences is shown. Each 653 

dot represents one sequence, and the color represents the predicted translation level.  654 

b. Generation and optimization of Gluc codon sequences using different w of 0, 0.5, 0.7, and 1. Each 655 

dot represents one sequence, positioned in its predicted translation level (y-axis) and MFE (x-axis). 656 

The position of the reference sequence (MF882921.1) is shown. 657 

c. Codons that appeared more frequently in highly translated endogenous sequences were also used 658 

more often in highly translated Gluc sequences generated by RiboCode. “RD”: RiboCode-generated 659 

sequences, “Endo.”: endogenous genes. (***: p<0.001, t-test). 660 

d. Changes of sequence features of optimized sequences compared to the unoptimized, for different 661 

mRNAs. For each column (feature), cells in red represent that the values were higher in optimized 662 

sequences than unoptimized ones while cells in green are opposite. The difference of ENC for INS 663 

shows no significance (the cell in gray). Abbreviations: GFP: green fluorescent protein, Fluc: firefly 664 

luciferase, INS: insulin, VZV: varicella zoster virus glycoprotein E, and HA: influenza A 665 

hemagglutinin. 666 
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 667 
Figure 4. Robustness of Optimization across Unmodified, Modified, and Circular mRNAs.  668 

a. Protein expression of Gluc was measured by fluorescence intensity. RD sequences were designed 669 

by RiboCode. LD sequences were designed by LinearDesign. “RLU”: relative light units. 670 

b. Correlation of experimentally measured protein expression values of Gluc at 24 hours versus 671 

predicted values of RiboCode and CAI (see Figure S7 for the details). 672 

c. Relative protein expression levels of mRNA variants in HEK293T vs. ARPE19 cells. The ratio of 673 

larger than 1 indicates high protein expression level in HEK293T than that in ARPE19.   674 

d. Relative protein expression levels of mRNA variants in HEK293T vs. A549 cells. The ratio of 675 

larger than 1 indicates high protein expression level in HEK293T than that in A549.   676 

e, f. Protein expression of generated Gluc codon variants in (e) the linear mRNA form with m1Ψ 677 

modification and (f) the circular mRNA form. 678 

 679 

  680 
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 681 

Figure 5. More Effective mRNA-based Influenza Vaccines Through Codon Optimization 682 

a. Western blot analysis shows protein expression of the HA variants in HEK293T cells 24 hours 683 

after transfection. RD sequences were designed by RiboCode. LD sequences were designed by 684 

LinearDesign. 685 

b, c. Protein expression RD1 in (b) the linear mRNA form with m1Ψ modification and (c) the circular 686 

mRNA form. 687 

d. HA mRNA immunization and analysis: BALB/c mice were intramuscularly inoculated with two 688 

doses (10g mRNA for each dose) with an interval of two weeks. The mouse serum was collected 689 

at 14 days and 28 days for MN assay.  690 

e. Levels of neutralizing antibodies against influenza viruses after prime and boost vaccination. 691 

IC50, half-maximal inhibitory concentration. PBS and split virus influenza vaccine (SV) were used 692 

as the negative and positive controls, respectively. One-sided Wilcox test was used to calculate p 693 

values shown in the figure. 694 

 695 
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 697 

Figure 6. Enhanced Protein Expression and Therapeutic Efficacy with Optimized NGF 698 

mRNA. 699 

a. NGF protein expression in HEK293T cells, measured by ELISA. RD sequences were designed 700 

by RiboCode. LD sequences were designed by LinearDesign. 701 

b, c. Protein expression levels of RD3 in m1Ψ-modified (b) and circular (c) mRNA formats. 702 

d. In vivo protein expression of RD3. The m¹Ψ-modified mRNAs were injected into mouse retinas 703 

by intravitreal injection, and protein levels were measured by western blot 48 hours post-injection. 704 

e. Timeline of NGF mRNA therapy in ONC model: At Day 0 (D0), the m¹Ψ-modified NGF mRNAs 705 

were injected into mouse retinas by intravitreal injection. At Day 4 (D4), the optic nerve was 706 

subjected to a physical crush injury. At Day 18 (D18), RGC numbers were quantified using 707 

immunofluorescence staining. 708 
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f, g. RGC numbers measured by immunofluorescence staining in the ONC mouse were significantly 709 

reduced compared to that of the control (one-sided Wilcox test). 710 

h. RGC numbers in the ONC mouse retina after injection of NGF m1Ψ-modified mRNA with 100 711 

and 500 ng/l dosages. 712 

i. The RGC number in mice treated with 100 ng/l RD3 was similar to those treated with 500 ng/l 713 

WT and significantly higher than those treated with 100 ng/l WT. One-sided Wilcoxon test was 714 

used to calculate p-values shown in the figure; ns: p>0.05. 715 

 716 
  717 
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Supplementary Materials 718 

 719 

Deep Generative Optimization of mRNA Codon Sequences for 720 

Enhanced Protein Production and Therapeutic Efficacy 721 
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 723 

Figure S1. Schematic diagram of the translation model structure.  Multi-head CNN contains 724 

four heads of CNN. Multi-head Attention is constructed by cell environment vector and transcript 725 

abundances through the fully connected layers. CNN Encoder consists of two max pooling layers 726 

and one convolutional layer. 727 
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 729 

Figure S2. MFE Model Architecture and Optimization Process 730 

a. MFE Model Architecture: a shallow CNN with two convolutional layers, nine Resblocks, and 731 

three fully connected layers. 732 

b. The MFE optimization contains four steps, including initial sampling, initial training, sequence 733 

generation and model retraining. 734 
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 736 

Figure S3. Training and internal validation sets of the translation model. Schematic 737 

representation of how the dataset was divided into training (90% of genes) and test (10% of genes) 738 

sets. The 320 total datasets were split into 200 for training and 120 for validation, creating three 739 

validation sets: “new gene”, “new cellular environment”, and “new gene in new cellular 740 

environment”. 741 
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 743 

 744 

Figure S4. Generated Gluc codon variants. Plot showing the predicted translation levels of Gluc 745 

codon variants generated using the translation model (w=0). The x-axis represents generation 746 

iterations, with red and blue lines indicating enhanced and reduced predicted translation, 747 

respectively. The green dashed line shows the predicted translation level of the reference Gluc 748 

sequence. 749 
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 751 

Figure S5. Codon Usage Similarity Between Endogenous and RiboCode-Generated Sequences. 752 

Comparison of codon usage patterns in endogenous high-translation sequences and low-translation 753 

sequences, as well as the RiboCode-designed sequences with enhanced and reduced translation for 754 

HA, and NGF in different cellular environments (HEK293T, A549, and HeLa). “Endo.”: 755 

endogenous. “RD”: RiboCode-designed. (t-test, ****: p<0.0001). 756 
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 758 

Figure S6. Features of generated codon sequences for different genes.  The graphs show various 759 

sequence features for optimized (red) and unoptimized (green) codon sequences for different genes 760 

(w=0). (t-test, ***: p<0.001). The full names of mRNAs are noted in the main text. 761 
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 763 

Figure S7. Correlation of experimental expression with predicted measures.  The graphs show 764 

correlations between experimental protein expression (in log) and translation predicted by 765 

RiboCode, and CAI. Pearson's correlation coefficients are provided.   766 
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 767 

Figure S8. Fluc protein expression in transfected HEK293T cells. Protein expression was 768 

determined by fluorescence intensity. RD1 and RD2 were generated by RiboCode (w=0 and 0.5, 769 

respectively). Compared to the wild-type (WT), RD2 expression increased by 14.5-fold at 24h, and 770 

17.9-fold at 48h. “RLU”: relative light unit. 771 
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 773 

Figure S9. Distribution of mRNA expression across all samples.  The graph shows the distribution 774 

of mRNA expression for 11,725 genes across all samples. Expression counts were transformed to 775 

log(y×RPKM+1), where y was set to 5 to maximize the correlation between mRNA abundance and 776 

translation level. RPKM stands for reads per kilobase of transcript per million reads mapped. The 777 

default mRNA count for codon optimization was set to 4.5 based on the median value of this 778 

distribution. 779 
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 781 

Table S1. Evaluation of translation prediction model on internal test sets.  This table compares 782 

the performance (R²) of the basic translation model with models incorporating additional inputs on 783 

various test sets. The basic input includes codon sequence, mRNA abundance, and cellular 784 

environment represented by gene expression profiles from RNA-seq. "Env." stands for cellular 785 

environment.  786 
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 787 

Table S2. Ablation analysis of translation model inputs. This table shows the results of an 788 

ablation analysis investigating the contribution of the three main inputs (codon sequences, mRNA 789 

abundances, cellular environment) to the translation model's performance. “CDS”: codon 790 

sequence. 791 
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 793 

Table S3. Predicted translation levels and experimental protein expression of Gluc mRNA 794 

variants. This table presents data for various Gluc mRNA constructs, including the reference 795 

sequence, RiboCode-generated variants (RD1-RD4 with different w values), and LinearDesign-796 

generated variants (LD1-LD2). For each construct, the table shows predicted translation levels, 797 

experimental protein expression in different mRNA formats (linear, m¹Ψ-modified, and circular) at 798 

24h and 48h post-transfection, as well as MFE and CAI values. Protein expression was measured 799 

by fluorescence intensity in HEK293T cells. 800 
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 802 

Table S4. Experimental protein expression of Gluc mRNA variants with cellular differential 803 

expression. This table presents experimental protein expression for various Gluc mRNA construct, 804 

including the reference sequence and RiboCode-designed variants. The designed variants were 805 

predicted to express more in HEK293T than in A549 (HEK_A549_1 to 3, w=0). For each construct, 806 

the table shows original protein expression level, expression level relative to the reference, and 807 
expression ratio of HEK239T/A549. Protein expression was measured by fluorescence intensity.  808 

 809 
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 811 

Table S5. Experimental protein expression of Gluc mRNA variants with cellular differential 812 

expression. This table presents experimental protein expression for various Gluc mRNA construct, 813 

including the reference sequence and RiboCode-designed variants. The designed variants were 814 

predicted to express more in HEK293T than in ARPE19 (HEK_ARPE_1 to 3, w=0). For each 815 

construct, the table shows original protein expression level, expression level relative to the reference, 816 
and expression ratio of HEK239T/ARPE19. Protein expression was measured by fluorescence 817 

intensity. 818 
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