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Abstract: Accurate evaluation of retinopathy of prematurity (ROP) severity is vital for screening and
proper treatment. Current deep-learning-based automated AI systems for assessing ROP severity do
not follow clinical guidelines and are opaque. The aim of this study is to develop an interpretable
AI system by mimicking the clinical screening process to determine ROP severity level. A total
of 6100 RetCam III wide-field digital retinal images were collected from Guangdong Women and
Children Hospital at Panyu (PY) and Zhongshan Ophthalmic Center (ZOC). A total of 3330 images
of 520 pediatric patients from PY were annotated to train an object detection model to detect lesion
type and location. A total of 2770 images of 81 pediatric patients from ZOC were annotated for
stage, zone, and the presence of plus disease. Integrating stage, zone, and the presence of plus
disease according to clinical guidelines yields ROP severity such that an interpretable AI system
was developed to provide the stage from the lesion type, the zone from the lesion location, and the
presence of plus disease from a plus disease classification model. The ROP severity was calculated
accordingly and compared with the assessment of a human expert. Our method achieved an area
under the curve (AUC) of 0.95 (95% confidence interval [CI] 0.90–0.98) in assessing the severity level
of ROP. Compared with clinical doctors, our method achieved the highest F1 score value of 0.76
in assessing the severity level of ROP. In conclusion, we developed an interpretable AI system for
assessing the severity level of ROP that shows significant potential for use in clinical practice for ROP
severity level screening.

Keywords: deep learning; retinopathy of prematurity (ROP); homologous pre-training; domain adaptation

1. Introduction

Retinopathy of prematurity (ROP) is the most widely recognized cause of visual
impairment after pre-term birth, with almost 220,000 prevalent cases of blindness and
vision loss due to ROP worldwide [1]. Early screening can reduce child blindness and
the relative cost of treatment. However, the lack of cost-effective screening strategies that
can feasibly be implemented in clinical practice has led to the current global cost of ROP
screening remaining high [2–6].

The early treatment for retinopathy of prematurity (ETROP) study guidelines [7] define
severe ROP, which requires treatment, as a combination of three components: staging,
zoning, and plus disease. According to the international classification of retinopathy of
prematurity (ICROP3) [8], staging is determined by the type of the most severe ROP lesion
(five stages), zoning is determined by the distance from the most severe lesion to the optic
disc (three zones), and plus disease is defined as the dilation and tortuosity of retinal vessels
within zone I.
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Current ROP screening relies on skilled ophthalmologists performing binocular in-
direct ophthalmoscope exams or interpreting wide-field digital retinal imaging (WFDRI),
requiring substantial ophthalmologist time and effort. However, experienced ophthalmolo-
gists are limited. AI solutions have been suggested to reduce this workload burden [9,10].
Existing AI research on ROP severity level screening mainly contains two categories. One
category involves the annotating of data with severity level of ROP by experienced doc-
tors and then utilizing a classification model to predict the final severity level [11–24].
The annotations can be fully or partially based on the clinical guideline; for example,
some studies incorporate stage as the severity factor since it helps determine treatment
needs [11,14–17,21]. The other category uses similar annotations but utilizes multi-modal
data, for example, RetCam III images and clinical reports, to provide age, birth weights [25],
and time series oxygen data [26] to predict the severity level.

AI medical models for retinopathy of prematurity (ROP) screening must prioritize
transparency and interpretability in their diagnostic processes [27–29], yet current AI
studies often fail to meet these standards. Both direct prediction of ROP severity level or
many studies on staging [30–35], zoning [36–40], and plus disease [33,41–49] predictions
utilize black-box CNN models, which inherently lack transparency. While combining these
models to mimic clinical processes is feasible, it still falls short in providing necessary
clarity. This opacity hinders clinicians in assessing diagnostic evidence, contradicting
evidence-based medicine principles and undermining trust in AI results [50,51]. Moreover,
the inability to communicate clear explanations to patients leads to lost clinical information
and reduced satisfaction [52]. Therefore, developing interpretable AI that aligns with
clinical guidelines is crucial for fostering trust, enabling result verification, and promoting
patient-centered care in ROP screening and broader medical diagnostics.

Our method significantly enhances clinical interpretability in ROP screening by map-
ping lesions from individual images onto a panoramic view with zoning templates, simul-
taneously presenting staging and zoning information. This transparent approach aligns
closely with the clinical diagnostic process, boosting doctors’ confidence in the results.
Unlike previous studies, our model not only identifies but also locates individual retinal
lesions, incorporating key diagnostic criteria—stage, zone, and plus disease presence—
directly from images, which is a first in adhering to clinical screening protocols. The model’s
visually interpretable decisions enable interactive reviews by ophthalmologists, reducing
misdiagnosis risks. Comparative testing on external datasets establishes great performance
improvement over ophthalmologists’ review. By leveraging domain adaptation to close the
domain gap, our model achieves high accuracy for ROP assessment from WFDRI images.
This feasibility for real-world severity screening promises to enhance timely treatment and
reduce vision impairment for premature infants.

2. Methods
2.1. DATA Preparation and Preprocessing

The data in this study were collected from two hospitals in China: Guangdong Women
and Children Hospital at Panyu (PY) and Sun Yat-sen University-affiliated Zhongshan
Ophthalmic Center (ZOC). The PY dataset, collected from January 2015 to March 2018, was
divided into training and validation subsets for lesion detection tasks. The ZOC dataset,
collected from April 2018 to March 2022, served as an independent external validation
dataset for the severity levels of ROP screening.

The images were captured directly with a contact retinal camera (RetCam III, Clarity
Medical System, 5775 W. Las Positas Blvd. Pleasanton, CA 94588 USA) and were exported
directly from the device in PNG and JPG formats. Patient data collection and anonymization
were carried out at each contributing center. Ethical approval for research use was obtained
from each center (The ethics committee of Zhongshan Ophthalmic Center, Sun Yat-sen
University (2020KYPJ175); the ethics committee of Guangdong Women and Children
Hospital (202201057)).
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There are 520 pediatric patients, totaling 3330 images with ROP disease from PY. For
the PY dataset, the original resolution is 640 × 480. We split the PY dataset into 80% for
lesion detection model training and 20% for validation (Table 1). For the ZOC dataset, the
original resolution is 640 × 480 or 600 × 1200 (resized to 640 × 480). There are 81 pediatric
patients, totaling 136 eyes, 2770 images of ROP disease for system test, and 9,275,644 images
from 9546 patients’ unlabeled images for pre-training and domain adaptation.

Table 1. The information about training data and validation data for PY.

Data Stage I Lesion Stage II Lesion Stage III Lesion Stage IV Lesion

training data 77 177 39 36
validation data 11 35 10 10

Two experienced ophthalmologists independently annotated the datasets, which were
reviewed by a clinical professor and served as the reference standard diagnosis. In case of
disagreements, the majority opinion was considered. The PY dataset annotated the type
and location of the lesions. The ZOC dataset annotated the stage, zone, and the presence of
plus disease in ROP.

Five ophthalmologists, including two senior doctors with around six years of experi-
ence and three junior doctors with around two years of experience, were invited to read
the ZOC datasets, including the stage, zone, and the presence of plus diseases in ROP.

2.2. Disease Classification Criteria

According to ETROP study guidelines [7], we classify all lesions in zone I, stage II
lesions with plus lesions in zone II, stage III lesions in zone II, and stage IV lesions as high
risk of severe ROP. There are no stage V lesions here; stage V lesions are inherently rare, and
once stage V lesions are discovered, they are promptly treated. Lesions in other categories
are considered mild. As many as 107 eyes from 64 pediatric patients are mild and 29 eyes
from 24 pediatric patients are severe in the ZOC dataset.

2.3. The Interpretable ROP Assessment System

Architecture: The assessment system includes the following steps (Figure 1): (1) All
orientation images from one eye are input into the lesion detection model. (2) The lesion
detection model detects the type and location of lesions from each image; the stage result
is calculated from the lesion type. (3) All orientation images from one eye are combined
via the stitching model [53] into a panoramic view for each eye. (4) The zone result is
determined by combining the panoramic view and location of lesions. (5) An image with
the optic disc in the center is input into the plus identification model, adapted from I-ROP
ASSIST [46] to predict the presence of the plus disease. (6) The severity grade of each
eye is inferred based on the stage, zone, and the presence of plus disease according to
clinical guidelines.

The process of obtaining interpretable results: First, the lesion detection model predicts
the types and locations of potential lesions. Subsequently, this information is mapped onto
panoramic images of each eye. Finally, panoramic images of individual eyes with staging
and zoning information are formed.

Development of the lesion detection model: The lesion detection model was developed
based on the RetinaNet framework [54], a classical framework in the field of object detection,
and Resnet 50 backbone [55]. We used the homogeneous pre-training to train the backbone
via self-supervised learning via the registration of images from the same orientation using
images from the unlabeled ZOC dataset. Data enhancements were performed, including
random flip, gaussian blur, green channel random, CLAHE random, photo metric distortion,
shear, and rotate. The workflow of the pretrain model is illustrated in Figure 2; the network
architecture used for feature extraction is based on ResNet50. The image registration task
of the pre-trained model involves leveraging the extracted features to predict registration
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parameters. Pytorch deep learning framework and a V100 GPU were used to train the
model. The loss function used is focal loss [56], with the Adam optimizer. The initial
learning rate was set at 0.0001. The batch size is set at 8, with the epoch of 800. The
performance of random initialization and ImageNet transfer learning and our proposed
homogeneous pre-training for lesion detection is shown in Figure 3.
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Figure 1. The workflow for automatic assessment of the severity level of retinopathy of prematurity:
(A) represents the data collection, model training and prediction, and lesion stitching, and finally
predicts the stage and zone results of ROP; (B) represents data collection, predicting plus disease
and obtaining the final result of whether each eye has plus disease or not. The severity grade is
ultimately inferred based on the stage, zone, and whether it is a plus lesion in ROP according to
clinical guidelines. Z I represents zone I; Z II S II+ represents zone II and stage II with plus disease.
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image. The model weights generated during this process were used for downstream task training.
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Figure 3. The performance of three training strategies for lesion detection: (A) represents the AUC
metric for the training set; (B) represents the AUC metric for the validation dataset.

Domain adaptation: The lesion detection model and the plus identification model
were trained using a PY dataset domain, which is different from the ZOC dataset such that
domain adaptation was performed on the ZOC unlabeled dataset by transforming it into
the PY dataset domain using the cycle-GAN framework [57], enhancing the generalization
performance of our model. The workflow of domain adaptation is illustrated in Figure 4.
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Figure 4. The flowchart of domain adaptation. The target domain ZOC images and their cropped
patches are transformed into the flowchart of domain adaptation based on CycleGAN. The blue parts
in the image represent the processing module or results for the entire fundus image in the ZOC,
while the red parts represent the processing module or results for the cropped patches from ZOC. We
utilize the source domain PY vessel segmentation task model and the feature style alignment module
to constrain the model. The final output will be images with a style similar to the source domain
PY data.
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2.4. Evaluation Metrics

The kappa (1) and accuracy were used to evaluate the performance of stage and zone
of ROP. The higher the value of kappa, the better the performance. The accuracy and F1
were used to evaluate the performance of plus disease classification. The accuracy (2),
sensitivity (3), specificity (4), and F1-score (5), as well as area under the curve (AUC), were
used to evaluate the performance of the severity levels of ROP.

kappa =
p0 − pe

1 − pe
(1)

accuracy =
TP + TN

TP + TN + FP + FN
(2)

sensitivity =
TP

TP + FN
(3)

speci f icity =
TN

TN + FP
(4)

F1 =
2 ∗ precision ∗ sensitivity

precision + sensitivity
(5)

2.5. Experiments Setting

To verify whether homologous pre-training models and domain adaptation techniques
contribute to improving the level of severity assessment in downstream ROP, we conducted
comparative experiments. We designated the use of homologous pre-training and do-
main adaptation techniques as method 1, random initialization and domain adaptation
as method 2, ImageNet and domain adaptation as method 3, homologous pre-training as
method 4, random initialization as method 5, ImageNet as method 6.

3. Results
3.1. Evaluation of the Performance for Classifying the Stage of ROP

Our system for classifying the stage of ROP significantly outperformed individual
ophthalmologists in both the accuracy and kappa of diagnostic predictions. In comparative
testing, our model achieved an accuracy of 0.69 and a kappa score of 0.62, surpassing all
five practicing ophthalmologists involved in the study, whose scores ranged from 0.37 to
0.57 for accuracy and 0.28 to 0.52 for kappa (Table 2). Additionally, our system attained
higher recall than ophthalmologists for most of ROP stages, only misclassifying the most
severe, stage 4 cases as the adjacent stage 3 (Figure 5).

Table 2. Compared our method with clinical doctors in assessing the performance of the stage of
ROP task.

Methods Acc Kappa

our system 0.69 0.62
clinical doctor A 0.57 0.52
clinical doctor B 0.37 0.28
clinical doctor X 0.47 0.47
clinical doctor Y 0.51 0.45
clinical doctor Z 0.45 0.36

We evaluated three different model training strategies: homogeneous pre-training
on retinal image datasets, random initialization, and transfer learning from ImageNet.
Homogeneous pre-training on relevant retinal images achieved superior performance
compared to the other approaches, indicating the benefit of building feature representations
on related ROP data. Further significant improvements were attained by adding domain
adaptation techniques to any of the training strategies. However, the combination of
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homogeneous pre-training followed by domain adaptation yielded the highest model
performance for the accurate automated classifying stage of ROP (Figure 6).
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3 represents using ImageNet plus domain adaptation; method 4 represents using homologous
pretrain; method 5 represents using random initialization; method 6 represents using ImageNet.
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3.2. Evaluation of the Performance for Classifying the Zone of ROP

Our system also showed strong performance for classifying the zone of ROP, exceeding
individual ophthalmologists in accuracy and kappa. Our model achieved an accuracy of
0.74 and a kappa of 0.55 for predicting the zone of ROP (Table 3). This accuracy surpassed
all five ophthalmologists tested, who scored between 0.61 and 0.73. Our system’s kappa
exceeded the majority of doctors, who ranged from 0.42 to 0.64. Additionally, our model
demonstrated higher recall than ophthalmologists for most of ROP zones, while some
zone III cases were conservatively misclassified as the more severe zone II (Figure 7). This
direction of misclassification aligns with the clinical priority of minimizing missed cases
during ROP screening, even if it increases disease over-diagnosis.

Table 3. Comparison of our method with clinical doctors in assessing the performance of the zone
of ROP.

Methods Acc Kappa

our system 0.74 0.55
clinical doctor A 0.61 0.51
clinical doctor B 0.61 0.42
clinical doctor X 0.62 0.54
clinical doctor Y 0.68 0.59
clinical doctor Z 0.73 0.64
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We also compared the three model training approaches for predicting the zone of ROP
(Figure 8). Similarly, homogeneous pre-training yielded superior performance to other
methods. Further sizable improvements were attained by incorporating domain adaptation
into any training strategy, while the combination of pre-training on retinal images followed
by domain adaptation achieved the highest model performance.
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Figure 8. Performance of various methods in assessing the zone of ROP tasks: (A) represents the
comparison between various methods on the kappa index in assessing the zone of ROP; (B) represents
the comparison between various methods on the accuracy index in assessing the zone of ROP.

3.3. Evaluation of the Performance of the ROP Plus Disease Prediction

Our system again outperformed individual ophthalmologists in predicting the pres-
ence of ROP plus disease. Our model achieved an accuracy of 0.96 and an F1 score of 0.7,
surpassing the doctors’ accuracy range of 0.90–0.94 and F1 range of 0.52–0.67 (Table 4). We
also evaluated the impact of domain adaptation on plus disease prediction, finding that
models trained with domain adaptation outperformed those without (Table 5).

Table 4. Comparison of methods with domain adaptation techniques and clinical doctors in assessing
the performance of detecting plus disease in ROP.

Methods Acc F1

our system 0.96 0.7
clinical doctor A 0.92 0.52
clinical doctor B 0.93 0.64
clinical doctor X 0.91 0.65
clinical doctor Y 0.94 0.67
clinical doctor Z 0.9 0.58

Table 5. Comparison using method and domain adaptation with clinical doctors in assessing the
performance of plus of ROP task.

Methods Acc F1

I-ROP ASSIST with domain adaptation 0.96 0.7
I-ROP ASSIST 0.92 0.35

3.4. Evaluation of the Performance of the Severity of ROP

Our system showed superior capabilities for evaluating overall ROP severity com-
pared to individual ophthalmologists. Our system achieved an area under the ROC curve
(AUC) of 0.95, with the ROC envelope encapsulating all doctors’ operating points (Figure 9).
Additionally, as detailed in Supplemental Table S1, our system attained an accuracy of
0.91 and F1 score of 0.76 for ROP severity assessment. This matched or exceeded the perfor-
mance of all five practicing ophthalmologists tested, who had accuracies of 0.81–0.90 and F1
scores of 0.58–0.76. By matching or surpassing human experts in both discrimination ability
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(ROC analysis) and precision/recall metrics, our machine learning approach demonstrates
reliable integrated severity analysis.
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With recall fixed at 1 to ensure all severe cases are identified, our method achieved
much higher specificity (up to 0.7) than other methods (Table 6). This indicates that our
approach maintains a lower false positive rate in detecting non-severe ROP cases, an
important capability for severity screening to minimize unnecessary treatments. Our
method also achieved an area under the ROC curve (AUC) of 0.95, surpassing all other
methods on the AUC index in the evaluation of the performance of the severity of the ROP
task (Figure 10).

Table 6. Performance of our method and compared methods in assessing the severity level of ROP.

Methods AUC (95%CI) Recall Specificity

domain adaptation with homologous pretrain 0.95 (0.90–0.98) 1 0.7
domain adaptation with random initialization 0.92 (0.86–0.96) 1 0.43

domain adaptation with ImageNet 0.93 (0.88–0.98) 1 0.45
homologous pretrain 0.93 (0.88–0.98) 1 0.68
random initialization 0.92 (0.87–0.97) 1 0.54

ImageNet 0.88 (0.81–0.94) 1 0.46
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domain adaptation: the red line represents method 1, which is our method; the blue line represents
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3.5. Visualization of Our Method

The visualization of our system is shown in Figure 11. When the system assesses
patients, it automatically generates a panoramic view along with the final results. This view
includes the optic disc, macula, and the stage and zone information of lesions. Ophthalmol-
ogists can evaluate promptly whether the system’s diagnosis is correct by browsing the
information on the panoramic image and explain to the patients what causes the severity
of the condition. This not only further reduces misdiagnosis but also facilitates effective
communication between ophthalmologists and patients.
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Figure 11. The visualization of our method. Box outlines in (A–D) indicate the type and sites
of lesions: (A) stage I: demarcation line; (B) stage II: ridge; (C) stage III: ridge with extra retinal
fibrovascular involvement; (D) stage IV: subtotal retinal detachment. The red circle in the middle
represents zone one; the region between the purple and red circles represents zone two; and the area
between the green and purple circles represents zone three. The yellow rectangle and red rectangle
in the figure represent the area predicted by the model for the lesion and annotated by the doctor,
respectively. The yellow letters and red letters represent the lesion type predicted and annotated by
the doctor, respectively.

4. Discussion

Unlike previous AI studies that classify ROP severity directly from fundus images in a
black-box manner [11–26], our model uniquely aligns with clinical practice guidelines by
replicating the structured diagnostic process step-by-step. By first detecting the underlying
criteria of the stage of ROP, the zone of ROP and plus disease presence before determining
an integrated severity level, our approach provides interpretability and mimics the sequen-
tial assessments of ophthalmologists. This allows ophthalmologists to interactively review
grading details, utilizing the interpretable results obtained to promptly assess the accu-
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racy of the system’s predictions regarding lesion staging and zoning, further pinpointing
problematic data, thereby reducing misdiagnosis or underdiagnosis risk, and establishing
trust through enhanced transparency. Rather than acting as just a second opinion, our
method serves as an interactive assistive tool that adheres to established protocols. By
advancing both accuracy and process alignment with clinical practice, our work represents
an important step toward safe integration of AI in ROP screening workflows, facilitat-
ing doctor–model collaboration through mutually interpretable and structured severity
evaluations that can improve clinical adoption, efficiency, consistency, and ultimately
patient outcomes.

Our model outperformed individual ophthalmologists in recognizing the stage of
ROP, achieving an accuracy of 0.69 and kappa of 0.62. For the recognition of zone, our
model attained an accuracy of 0.74, surpassing all ophthalmologists, and a kappa of
0.55, exceeding most ophthalmologists. Our system also showed superior plus disease
of ROP identification to ophthalmologists, with an accuracy of 0.96 and an F1 score of
0.7. Following clinical guidelines, we integrated the recognition of stage, zone, and plus
disease to determine overall ROP severity, with visual explanations of the grading. Our
method matched or exceeded individual ophthalmologists in ROP severity evaluation.
By accurately replicating the structured diagnostic processes of ophthalmologists, our
interpretable AI system demonstrates promising capabilities to serve as an assistive tool
for automated ROP assessment.

Limitations of This Study

Our model demonstrates some limitations in identifying advanced ROP disease stages
and zones, which can be attributed to imbalanced training data. As shown in Figures 5 and 7,
performance was lower for stage IV versus earlier stages, and some zone III cases were
misclassified as zone II, reflecting the smaller sample sizes for these categories. By col-
lecting more diverse ROP data in the future, especially for late-stage and peripheral zone
III disease, we can re-balance the training set and further improve model performance.
Expanding beyond our current RetCam III dataset to include other modalities like OCTA
and fluorescence imaging is another valuable direction, even if their utility for ROP assess-
ment remains limited presently. Although challenging, building a larger multi-modality
ROP training corpus could strengthen our model’s capabilities across all disease stages
and zones. While our current results surpass those of most individual ophthalmologists,
enhancing performance on less-prevalent cases will be an important focus going forward
to ensure reliable identification of the most severe and advanced disease. Currently, we can
only interpret the staging and zoning information for each eye; we cannot interpret aspects
related to plus disease. Our next goal is to develop a model that can interpret both staging,
zoning, and plus disease.

5. Conclusions

In conclusion, we have developed an interpretable AI system for the automated
assessment of retinopathy of prematurity (ROP) severity. Our results demonstrate that
this model can accurately detect ROP stage, zone, and plus disease presence directly
from fundus images. The full evaluation process is conducted automatically without
human intervention, yet it also allows for interactive visualization and verification of
diagnosis details. By replicating the structured diagnostic approach of ophthalmologists in
a transparent manner, our system acts as an assistive screening tool that aligns with clinical
guidelines. The strong performance achieved thus far highlights the potential of our AI
solution to aid clinicians in ROP severity evaluation, improving efficiency, consistency, and
timeliness of assessments to guide treatment decisions. In the future, we will continue to
gather more data to validate and enhance our model. We remain dedicated to advancing in
this field.
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