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Abstract

Merging multiple slices into a unified 3D atlas is a significant challenge in spatial
transcriptomics. Here, we introduce STAIR, an end-to-end solution for alignment,
integration, and 3D reconstruction. STAIR employs a heterogeneous graph attention
network with spot-level and slice-level attention mechanisms to achieve a unified
embedding space and guide unsupervised 3D reconstruction. We demonstrate
STAIR's marked improvements in feature integration and 2D alignment across
samples and platforms compared to previous methods. Furthermore, STAIR shows
first-of-its-kind performance in z-axis reconstruction of parallel slices and seamlessly
integrates new slices into existing 3D atlases, providing novel biological insights from
a 3D perspective.

Keywords Spatial transcriptome, 3D reconstruction, Alignment, Integration,
Heterogeneous graph attention network

Background

Recent advances in spatial transcriptomics (ST) have enabled the measurement of gene
expression while preserving the spatial organization of tissues. Various ST techniques
[1-7] facilitate exploring molecular programs in their native spatial context. To study
organ- or tissue-level architecture in three-dimensional (3D) space, researchers sampled
parallel slices of specific samples at certain distance intervals, where each slice captures
spatially resolved molecular features in a single plane (x-axis and y-axis) [8—11]. At pres-
ent, construction of ST-based molecular atlases is ongoing, such as mouse brain [8, 11],
macaque brain [10], and drosophila embryo [9]. By revealing topological structures
organ-wide, these studies advance our comprehension of molecular drivers of tissue
organization.

However, constructing a 3D atlas from these serial slices remains challenging. Because
slices are sequenced independently after sectioning, they often exhibit batch effects in
gene expression space and lack shared spatial coordinates in physical space. These dif-
ficulties are further compounded when integrating slices across different samples, where
the relative spatial distances between slices (z-axis) are generally unknown. As a result,
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direct 3D atlas reconstruction is hindered, underscoring the need for computational
strategies that can jointly integrate, align, and position slices in a coherent 3D space.

Several computational methods have been proposed to analyze multi-slice ST data.
PRECAST [12] integrates spatial embeddings across slices through a probabilistic
framework. PASTE [13] aligns 2D coordinates by balancing gene expression similarity
and spatial proximity using optimal transport. STAligner [14] unifies embedding inte-
gration and 2D alignment via graph attention networks and triplet loss, followed by
landmark-based 2D registration based on manually selected landmark domains. While
these approaches improve cross-slice correspondence in either feature space or physical
space, they operate mainly within the 2D plane. More recently, STitch3D [15] extended
these efforts toward 3D analysis by jointly modeling multiple slices to reconstruct tissue
structures, cell distributions, and developmental trajectories.

Despite substantial progress, several limitations remain. First, current spatial feature
integration strategies treat slices uniformly, ignoring slice-level similarity and struc-
tural relevance, which restricts the ability to leverage global organ-level information and
limits overall integration performance. Second, gene expression batch effects are often
entangled with spatial structure. Spatial features constructed directly on batch-affected
expression may propagate noise during neighborhood aggregation, while subsequent
batch correction may distort true biological variation. Third, existing 2D alignment
methods generally neglect the quantitative use of local region contours, which is the
critical information for ensuring continuity between adjacent slices. Fourth, existing
3D reconstruction methods (e.g., STAligner, STitch3D) either assume known inter-slice
distances or require full spot-level 3D coordinates. However, such information is often
unavailable or unreliable, when dealing with slices across different samples lacking stan-
dardized anatomical measurements. Consequently, computational inference of relative
z-axis positioning is essential for truly assembling multi-sample 3D atlases, which is a
capability that current solutions do not provide. Finally, existing 3D atlases offer limited
capacity for quantitative annotation, transfer, or integration of new slices, which hinders
both the utility of atlas information and the accumulation of knowledge within a fixed
spatial reference framework.

To address these challenges, we developed STAIR, an end-to-end framework for spa-
tial feature integration, 2D physical coordinate alignment and 3D construction. STAIR
first mitigates batch effects at the gene expression level using a batch-aware nonlinear
embedding to ensure that the expression features are harmonized across slices before
spatial feature learning and alignment. It then constructs a large heterogeneous graph
[16] with the spots from all slices as nodes and assigns node attributes based on the
slice each spot belongs to. To achieve accurate spatial feature integration and consis-
tent spatial region partitioning across slices, STAIR employs an attention mechanism
for adaptive feature aggregation both within and across slices, with cross-slice aggrega-
tion leveraging spot-level and slice-level attention. These results are then used to guide
2D alignment. Crucially, STAIR infers the relative z-axis positioning of parallel slices
in a fully unsupervised manner, requiring only standard ST data as input. Moreover,
STAIR enables seamless incorporation of new slices into an existing 3D atlas, effectively
expanding the reference 3D atlas. We systematically benchmarked STAIR across diverse
datasets and demonstrated its superior performance in spatial feature integration
and 2D alignment. Notably, STAIR is the first method capable of unsupervised z-axis
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reconstruction of parallel slices, as shown in applications to the mouse hypothalamic
preoptic area, whole mouse brain, and tumor tissues. STAIR further enables cross-plat-
form atlas expansion, accurately integrating new slices from a different ST platform and

transferring atlas annotations.

Results

Overview of the STAIR framework

STAIR achieves integration and alignment of molecular features and physical coordi-
nates for ST data, enabling 3D reconstruction and assimilation of new slices into the ref-
erence atlases (Fig. 1). The framework requires only ST data as input and outputs aligned
spatial embeddings and reconstructed 3D coordinates. STAIR consists of two core mod-
ules (Fig. 1A): STAIR-Emb, which aligns molecular embeddings, and STAIR-Loc, which
performs 2D coordinate registration along the x—y plane. The reconstruction and pre-
diction of z-axis positions are based on the high-order semantic information captured
by STAIR-Emb. Based on the aligned embeddings, spatial domains and developmental
trajectories can be identified through standard clustering and trajectory inference. Thus,
using multi-slice ST data alone, STAIR reconstructs 3D tissue organization while pre-
serving both discrete anatomical structures and continuous spatial gradients.

For spatial feature integration (Fig. 1A, left), STAIR first applies an autoencoder with
batch factors [17, 18] for nonlinear dimensionality reduction, mitigating batch effects in
gene expression. STAIR-Emb then builds a heterogeneous graph in which all spots serve
as nodes and their slice identities serve as node attributes. Intra-slice edges are defined
by spatial neighborhoods, whereas inter-slice edges are weighted by gene expression
similarity because the relative slice positions are unknown. Subsequently, STAIR-Emb
aggregates intra-slice and inter-slice neighbor information in sequence, where the inter-
slice aggregation employs an attention mechanism [16] composed of spot-level and
slice-level attention. Importantly, slice-level attention scores capture higher-order cor-
respondences across slices.

For 2D physical coordinate alignment (Fig. 1A, right), STAIR-Loc conducts a two-
step registration between slice pairs. The initial alignment uses rotation and translation
guided by spatial features to produce an approximate overlay. The fine alignment then
employs the iterative closest point (ICP) algorithm [19] based on boundary spots of the
slices and the most aggregated domain. Sequential application of STAIR-Loc across
ordered slices reconstructs a stacked 3D space.

To enable fully unsupervised 3D reconstruction from an arbitrary set of parallel slices
(Fig. 1B), we define inter-slice semantic distances based on the slice-level attention
scores and construct a minimum spanning tree (MST) [20] to infer the relative z-axis
coordinates. These inferred z-coordinates then guide the final x—y alignment in STAIR-
Loc, producing a continuous 3D atlas. STAIR also supports assimilation of new paral-
lel slices into an existing atlas (Fig. 1C). We identify atlas slices close to the new slice
based on the semantic distances, followed by attention-weighted averaging to predict
the z-coordinate of the new one. The atlas slice with the closest z-coordinate is then
selected as a spatial template to scale and align the x- and y-axes. At this stage, the 3D
coordinates for every spot in the new slice have been obtained, allowing annotated atlas
information (e.g., standard anatomical region labels) to be accurately propagated to the
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Fig.1 Overview of STAIR framework. A STAIR processes multiple ST slices by utilizing an autoencoder to compress
the expression matrices of each slice, resulting in integrated expression features. Subsequently, STAIR-Emb takes
the expression features and the 2D coordinates of each slice as input, employing a heterogeneous graph attention
network to learn integrated spatial features. Finally, STAIR-Loc utilizes these spatial features to establish the initial
alignment of spatial coordinates, followed by refining the alignment further by incorporating boundary points
of slices and their respective domains. B 3D atlas reconstruction of parallel slices. Without prior knowledge of
inter-slice distance, STAIR-Emb derives inter-slice distance matrices from semantic relationships, and a minimum
spanning tree (MST) infers relative z-axis positions to guide sequential 2D alignment. C Integration of new parallel
slices into an existing 3D atlas. STAIR-Emb integrates spatial features of the new slice with the 3D atlas, followed
by predicting the new slice's z-axis location and aligning its 2D coordinates (x- and y-axis) with the 3D atlas using
STAIR-Loc

newly integrated slice. Such expansion enhances the utility and applicability of the estab-
lished 3D atlas.

Accurate integration of spatial embeddings across slices by STAIR
We first quantitatively evaluated STAIR’s efficacy in integrating spatial embeddings
and identifying unified spatial domains across diverse tissue sections, a prerequisite for
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downstream analysis. Our initial testing utilized 10X Visium dataset derived from the
human dorsolateral prefrontal cortex (DLPFC) [21], spanning three samples with four
sequential sections per sample. The original study [21] performed precise manual anno-
tation, delineating white matter (WM) and six gray matter layers ranging from layer 1
to layer 6 to provide ground truth labels (Fig. 2A). First, we conducted separate spatial
domain identification from slices of each sample, which had close locations with some
differences. STAIR achieved the most accurate domain division results on all three
samples (Fig. 2B, Additional file 1: Fig. S1), with respective median adjusted rand index
(ARI) values of 0.60, 0.53, and 0.62 (Fig. 2C).

Then, we processed twelve slices from three samples simultaneously (Fig. 2D; Addi-
tional file 1: Fig. S2A). STitch3D was excluded from this test due to its requirement for
3D coordinates to handle multiple slices, which were not available. Despite the chal-
lenge, STAIR maintained the highest consistency with annotations, achieving a median
ARI value of 0.65, far exceeding the second-ranked STAligner with a median value of
0.46 (Fig. 2C, right). Notably, simultaneous consideration of three samples proved supe-
rior to testing each sample individually, resulting in higher ARI and a clearer demarca-
tion between layer 4, layer 5, and layer 6 (Fig. 2B to D). In Sample 2, STAIR uncovered a
small set of spots corresponding to layer 1 (cluster 7) and layer 2 (cluster 5), which had
been misclassified as layer 3 (cluster 3) in the original annotation. Validation using layer-
specific marker genes (GFAP for layer 1, C1QL2 and HPCALI for layer 2, and ADCYAP1
and FREM3 for layer 3) confirmed the presence of these layers (Additional file 1: Fig.
S3), demonstrating that STAIR not only ensures robust cross-sample alignment but also
refines existing annotations by uncovering biologically meaningful structures previously
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Fig. 2 STAIR effectively integrates heterogeneous spatial transcriptomics data. A Ground-truth segmentation of
manually annotated regions in 12 DLPFC sections. B STAIR's spatial domain identification based on the 4 DLPFC
slices for each sample. C Boxplots of adjusted rand index (ARI) scores of the four methods applied to the 4 DLPFC
slices of each sample and to the total 12 slices of the three samples. In the boxplot, the center line denotes the me-
dian, box limits denote the upper and lower quartiles, and whiskers denote the 1.5 xinterquartile range. D STAIR's
spatial domain identification based on the 12 DLPFC slices



Yu and Xie Genome Biology (2025) 26:427 Page 6 of 30

overlooked. Subsequently, we performed low-dimensional visualization using uniform
manifold approximation and projection (UMAP) [22] based on the spatial embeddings
derived by these methods (Additional file 1: Fig. S2B). In the STAIR-based visualiza-
tion, all spots exhibited an arrangement according to the layers, with thorough mixing
between the different samples. In contrast, both STAligner and PRECAST lacked clarity
in arranging and distinguishing these known layers. Specifically, STAligner mixed layer
2 and layer 3, as well as layer 4 to layer 6, while PRECAST only distinguished WM. We
also quantified the effects of spatial embedding learning and integration using average
silhouette width (ASW). We calculated ASW for spatial embeddings with respect to
spatial domains (ASW gomain) and samples (ASWatcr ), as well as ASW gy to evaluate
overall capability (Methods). STAIR achieved best spatial embedding learning and inte-
grating with the highest ASW 1 (Additional file 1: Fig. S2C). STAligner also adequately
integrated samples, as indicated by an ASW .., value similar to STAIR. However, it
had weaker feature learning capabilities with a much lower ASW 4o1m4in, which was con-
sistent with the unclear UM AP pattern we observed previously.

Furthermore, we conducted comprehensive ablation studies to evaluate the contri-
bution of each component within STAIR-Emb, as well as the number of slices for each
sample to the overall performance improvement (Additional file 2: Note S1, Fig. S4). In
summary, STAIR successfully learned and integrated the spatial embeddings, ensuring a
consistent spatial region division.

Precise alignment of 2D coordinates across slices by STAIR

A single ST experiment only acquires data from one slice, resulting in the loss of the
unified physical space across multiple slices. In this section, we evaluate STAIR’s abil-
ity in 2D coordinates alignment. We utilized 12 MERFISH slices of the mouse hypo-
thalamus preoptic area [2] with known 3D coordinates. To perform testing, we kept the
first slice fixed while introducing random rotations and translations in x- and y-axes to
the remain 11 slices (Fig. 3A). Subsequently, we employed STAIR, STAIR-init (initial
alignment of STAIR-Loc), PASTE, STitch3D, and STAligner on the 2D shuffled slices
and assessed their effectiveness. For the spatial features based 2D alignment methods,
including STAIR and STAligner, we first learned and aligned the spatial features of all
12 slices simultaneously, and then performed 11 consecutive pairwise positional align-
ments while keeping the reference slice fixed.

STAIR achieved the most accurate 2D alignment, aligning each slice to a position very
close to the real coordinates (Fig. 3B), with the median rotation and translation errors
being 0.03 and 0.04mm respectively (Fig. 3C). STAIR's accurate alignment results partly
benefited from the good initial values provided by the initial alignment based on spatial
features. The alignment of STAIR-init was already quite impressive, with the medians of
the two errors being 0.1 and 0.1mm, ranking second after STAIR. Fine alignment based
on the continued spatial domain further improved STAIR's accuracy. Repeating 500
random rotations and translations, both STAIR and STAIR-init achieved similar results
(Additional file 1: Fig. S5A). STAligner performs 2D alignment based on spatial feature
of manually selected spatial domains. Since anchor domain selection might affect the
results, we selected each domain as an anchor in turn. Among them, four domains could
produce alignment result, which we named STAligner-0, STAligner-1, STAligner-2,
and STAligner-4, respectively. Different anchor domains performed differently, with
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Fig. 3 Precise alignment of 2D coordinates by STAIR. A Schematic diagram of spatial position alignment. 2D coor-
dinates in the first slice were fixed, and the remaining 11 slices were randomly rotated and translated. STAIR, STAIR-
init, PASTE, STitch3D, and STAligner were employed to align the spatial coordinates of the rotated data. B Results of
2D spatial alignment using STAIR, STAIR-init, PASTE, STitch3D, and STAligner. C Boxplots showing the rotation (left)
and translation (right) errors of each method. In the boxplot, the center line denotes the median, box limits denote
the upper and lower quartiles, and whiskers denote the 1.5 x interquartile range

STAligner-0 achieving the best results with median errors of 0.5 and 0.5mm. In con-
trast, the alignment effects of STitch3D and PASTE were limited, exhibiting rotation and
translation errors over 1.5 and 1.8mm, respectively.

We further assessed STAIR’s robustness in aligning 2D coordinates. First, we exam-
ined the impact of resolution by aggregating neighboring cells into virtual spots with
lower resolution. With 2-5 aggregated cells per spot, STAIR maintained the lowest
median rotation errors of 0.02—0.07 and translation errors of 0.04—0.10mm (Additional
file 1: Fig. S5B). The two errors of STAIR-init were slightly larger, with values rang-
ing from 0.08 to 0.17 and 0.13 to 0.17mm, respectively. Furthermore, assuming that
STAligner could make the most accurate manual domain selection for 2D alignment, we
reported only the optimal result as STAligner-best. At different resolutions, the rotation
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and translation error ranges of STAligner-best were 0.30 to 1.01 and 0.46 to 0.98, respec-
tively. Additionally, given that fine alignment of STAIR relied on spatial domain infor-
mation, we examined performance across 8—15 domains (Additional file 1: Fig. S5C).
STAIR demonstrated stable alignment, with median rotation errors of 0.02 to 0.08 and
translation errors of 0.03 to 0.09.

In short, dataset with ground truth coordinates confirmed STAIR's capabilities for
precise 2D slice alignment and its robustness across varied resolutions and numbers of
spatial domains.

STAIR effectively integrates heterogeneous ST data

With the advancement of ST technology, integrating datasets from different samples and
platforms became increasingly important. Effective integration should identify shared
signals across samples while retaining biologically unique variations within each indi-
vidual sample.

We applied STAIR to integrate mouse olfactory bulb data from Stereo-seq [23] and
Slide-seqV2 [4] platforms, which differed in spatial resolution and sampling loca-
tion. Stereo-seq captured the main olfactory bulb (MOB) at sub-single-cell resolution,
providing highly detailed spatial information. In contrast, Slide-seqV2 encompassed
both MOB and the accessory olfactory bulb (AOB) with a resolution of 10 um, which
approximates but does not precisely achieve single-cell resolution. STAIR accurately
delineated the MOB region common to both datasets and the AOB region unique to
Slide-seqV2 (Fig. 4A, top), highly consistent with standard allen brain atlas (ABA) par-
titioning (Additional file 1: Fig. S6A). The AOB region, located in the middle-upper part
of the olfactory bulb, comprised two sub-regions: AOBmi and AOBgr. The MOB region
encompassed seven sub-regions arranged in a concentric ring: rostral migratory stream
(RMS), granule cell layer (GCL), two mitral cell layers (MCLs), external plexiform layer
(EPL), glomerular layer (GL), and olfactory nerve layer (ONL). Each region exhibited
high expression of its corresponding marker genes (Additional file 1: Fig. S6B). In com-
parison, STAligner struggled to identify the RMS layer and confused the EPL and GL
layers of Stereo-seq (Fig. 4A, middle). PRECAST failed to identify coherent spatial pat-
terns (Fig. 4A, bottom). UMAP visualization demonstrated that STAIR effectively distin-
guished between AOB and MOB in low-dimensional space, preserving the AOBmi and
AOBgr sub-regions in Slide-seqV2 data (Fig. 4B, C). Simultaneously, STAIR seamlessly
integrated the shared MOB region, arranging sub-layers consistent with their physical
locations. In contrast, while STAligner achieved integration to a certain extent, it failed
to discern the distinct difference between AOB and MOB. PRECAST completely mixed
the datasets, losing Slide-seqV2 specificity.

Furthermore, we integrated mouse embryo data from three platforms: Stereo-seq,
Slide-seqV2, and seqFISH. These datasets exhibit significant differences in biological
characteristics, experimental properties, spatial resolution, and gene throughput. The
mouse embryos were sampled at E9.5 for Stereo-seq [7] and Slide-seqV2 [24], and E8.75
for seqFISH [25]. Both Stereo-seq and Slide-seqV2 performed genome-wide measure-
ments, with Stereo-seq data at bin50 (35.71um) and Slide-seqV2 at 10 um spatial reso-
lution. In contrast, seqFISH, an imaging-based ST method, measured 342 genes with
single-molecule resolution. Despite these substantial differences, STAIR successfully
achieved spatial feature integration (Additional file 1: Fig. S7A) and consistent spatial
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Fig.4 Cross-platform integration of mouse olfactory bulb and embryo datasets. A Integrative spatial domain iden-
tification of mouse olfactory bulb datasets: Stereo-seq (left) and Slide-seqV2 (right), using STAIR (top), STAligner
(middle), and PRECAST (bottom). B UMAP visualizations derived from spatial embeddings of STAIR (top), STAligner
(middle), and PRECAST (bottom), colored by identified spatial domains. C UMAP visualizations derived from spatial
embeddings of STAIR (top), STAligner (middle), and PRECAST (bottom), colored by dataset of origin. D Spatial vi-
sualization of domain identification and 2D alignment results for three mouse embryo datasets: Stereo-seq (top),
Slide-seqV2 (middle), and seqFISH (bottom). Colors represent spatial domains identified by STAIR. E Heart, somite,
and tailbud mesoderm domains identified by STAIR for three mouse embryo datasets: Stereo-seq (left), Slide-seqV2
(middle), and segFISH (right). F Scaled expression of marker genes Ttn, Cdx4, and Tall, corresponding to heart, tail-
bud mesoderm, and blood vessels and blood, respectively, in the three mouse embryo datasets

domain identification (Fig. 4D, E, Additional file 1: Fig. S7B, C), while also scaling and
aligning the 2D coordinates of these slices (Fig. 4D). STAIR identified domains including
forebrain, midbrain, hindbrain, spinal cord, neural crest, somite, heart, blood vessels and
blood, liver-gut tube, meninges, connective tissue, tailbud mesoderm, lateral plate meso-
derm, and cranial mesoderm. These domains were validated through known marker
genes: Lhx2 [26], Otx2 [27], Gbx2 [25], Hoxb9 [28], Prrx1 [29], MeoxI [24], Ttn [24], Tall
[30], Afp [24], Col4al [24], Postn [7], Cdx4 [31], Foxfl [32], and Thx1 [33], respectively
(Fig. 4F, Additional file 1: Fig. S8). Notably, despite significant positional differences in
domains such as the heart and somite across the datasets, particularly in Slide-seqV2,

they all highly correspond with areas of high Ttn gene expression (Fig. 4E, F, top). The
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Slide-seqV2 dataset also exhibited a unique tailbud mesoderm region (Fig. 4E, F, mid-
dle). Importantly, STAIR not only identified these highly spatially clustered domains but
also accurately detected dispersed structures such as blood vessels and blood, and con-
nective tissue (Fig. 4E, F, bottom).

In conclusion, despite the diverse origins of these datasets from distinct platforms with
significant biological and technological disparities, STAIR successfully achieved precise
feature integration and 2D spatial alignment.

Construction of 3D atlas by STAIR

Although spatial embeddings and 2D coordinates can be aligned across multiple het-
erogeneous slices, constructing a coherent 3D atlas from multi-sample ST data remains
challenging. When slices originate from different samples, their relative positions along
the z-axis are typically unknown. To address this challenge, STAIR computationally
infers the relative z-axis positions of slices, enabling 3D reconstruction without any pre-
existing slice-level z-coordinate information.

We first evaluated z-axis reconstruction on a single-sample dataset to validate the reli-
ability of STAIR’s 3D positioning. Specifically, we used 12 MERFISH-generated mouse
hypothalamic preoptic area slices (Fig. 5A, left), for which the true z-axis positions were
available [2] (Additional file 1: Fig. S9A). STAIR-Emb was applied to integrate the slices
(Additional file 1: Fig. S9B, C), and we observed that inter-slice attention scores were
strongly negatively correlated with physical distances (Fig. 5A middle, B), highlighting
their potential for z-axis inference. Using MST constructed from the attention-derived
semantic distance matrix (Methods), STAIR accurately reconstructed the z-axis (Fig. 5A
right). We then sequentially aligned the x- and y-axes of slices according to the recon-
structed z-axis, yielding a 3D atlas that closely matched the true coordinates (Fig. 5A
right). We benchmarked z-axis reconstruction against simpler slice—slice similarity
measures, including Pearson correlation of total gene expression and cell-type composi-
tion between slices. Pairwise similarity visualization and spearman’s p correlations with
physical distances showed that attention scores consistently provided the strongest neg-
ative correlations (Fig. 5B, C, Additional file 1: Fig. S9D). In slices A5-A11, both gene
expression and cell-type composition were highly correlated (Fig. 5C, green box), while
attention scores accurately reflected their true physical relationship. We quantitatively
evaluated z-axis reconstruction using three metrics: Pearson correlation coefficient
(PCC) between reconstructed and true coordinates, the normalized mean squared error
(NMSE), and the misordering rate (MR) (Methods). Attention-based reconstruction was
nearly perfect, achieving PCC=1 with NMSE=0 and MR=0 (Fig. 5D, E). By contrast,
simpler similarity metrics yielded much higher NMSE, particularly for cell-type com-
position, suggesting reduced precision in localization. To further challenge the mod-
els, we randomly cropped slices at different angles, removing 20%, 40%, or 60% of spots
(Additional file 1: Fig. S10). As crop ratios increased, the performance of simple simi-
larity metrics degraded substantially, whereas attention-based reconstruction remained
robust (Fig. 5F). Even under 60% cropping, the median NMSE remained as low as 0.08
(Fig. 5G). This robustness stems from the ability of attention to integrate higher-order
semantic associations across locally matched spots rather than relying solely on global
slice-level similarity. Finally, when applied to 24 slices from two animals of opposite
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sexes, STAIR maintained high accuracy, demonstrating robustness to biological variabil-
ity (Additional file 1: Fig. S11).

We next tested STAIR on a more challenging dataset comprising 40 coronal half-brain
slices generated from three different samples using the ST platform [8], spanning the
olfactory bulb to the hindbrain along the anterior—posterior (AP) axis. Bregma coordi-
nates from the original study [33] serving as ground truth z-axis positioning (Fig. 6A,
left). STAIR-Emb efficiently integrated spatial features and delineated spatial regions
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(Additional file 1: Fig. S12A). Despite the complexity of this dataset, inter-slice atten-
tion scores remained strongly negatively correlated with physical distances (Fig. 6A,
middle), enabling accurate reconstruction of the AP-axis coordinates. Subsequently,
STAIR-Loc aligned dorsoventral (DV) and mediolateral (ML) coordinates following the
reconstructed AP order, completing the 3D reconstruction (Fig. 6A, right). The accuracy
of spatial localization was further validated by the high expression of region-specific
marker genes, including Dsp [34] in the hippocampus, Gpr88 [35, 36] in the striatum,
Ramp3 [37, 38] in the thalamus, and Camk2nl [39] in the superficial cortex (Fig. 6B).
We further compared attention-based reconstruction with simpler similarity metrics
under both full-slice and cropped conditions (20%, 40%, 60%) (Fig. 6C—E, Additional
file 1: Fig. S12B, C, S13). Attention consistently outperformed other metrics in PCC and
NMSE, confirming its superiority in capturing higher-order semantic relationships. MR
was relatively unsatisfactory across all methods. This can be explained by the fact that
MR is a highly sensitive metric: even small deviations in reconstructed positions, which
may have little impact on PCC or NMSE, can still be counted as ordering errors, thereby
inflating the MR values.

Finally, we applied STAIR to two large, orthogonal MERFISH mouse brain datasets
comprising 66 coronal and 23 sagittal slices respectively, each containing over one mil-
lion cells. STAIR accurately reconstructed the z-axis positions and sequentially aligned
the x- and y-axes (Fig. 7A, B). STAIR-derived spatial features enabled precise UMAP
visualization and brain region delineation (Fig. 7C, D), while seamlessly integrating dif-
ferent samples and slices (Additional file 1: Fig. S14A, S15A). From anterior to posterior,
we successfully identified olfactory regions and subregions, superficial (Layers 1-3) and
deep (Layers 4—6) layers of the isocortex, striatum, hippocampus (CA and DG), thala-
mus, hypothalamus, midbrain, hindbrain, and cerebellum (granular, Purkinje—Berg-
mann, and molecular layers). Additional structures including fiber tracts, the ventricular
system (VS), and meninges were also recovered. Each region was faithfully reconstructed
in 3D with strong spatial continuity (Additional file 1: Fig. S14B, S15B, S16, S17). We
further benchmarked z-axis reconstruction by comparing attention scores with simpler
similarity metrics. Attention consistently yielded the strongest correlations with physical
distance and the highest accuracy (Fig. 7E-G, Additional file 1: Fig. SI8A-C, S19A-C),
highlighting its ability to capture higher-order inter-slice relationships beyond intui-
tive similarity. Moreover, attention remained robust under random cropping (20%, 40%,
60%), again outperforming simpler measures (Additional file 1: Fig. S18D, S19D, S20,
S21).

3D modeling of breast tumor microenvironment

To further illustrate biological insights provided by 3D atlas, we analyzed the HER2-pos-
itive breast cancer [40] ST data comprising three consecutive slices (H1 to H3) (Addi-
tional file 1: Fig. S22A). The pathologists [40] annotated one slice (H1) with six tissue
types: invasive cancer, adipose tissue, connective tissue, breast glands, in situ cancer, and
immune infiltrates (Fig. 8A).

First, STAIR integrated the spatial embeddings of all the three slices, yielding spa-
tial domains highly consistent with the pathological annotations (Additional file 1:
Fig. S22B). On slice H1, STAIR achieved an ARI of 0.36, surpassing that of STAligner,
STitch3D, and PRECAST, which ranged from 0.30 to 0.32 (Additional file 1: Fig. S22C).
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Fig. 7 STAIR reconstructs 3D atlases for coronal and sagittal MERFISH mouse brain. A, B Visualization of the 3D
coordinates reconstructed by STAIR for coronal (A) and sagittal (B) mouse brains. The z-axis represents slice-wise
reconstruction, while the x- and y-axes are aligned according to the reconstructed z-axis order. Each dot represents
a cell, with 100,000 cells randomly subsampled for visualization. Points are colored by spatial domains. C, D UMAP
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domains. Each dot represents a cell, with 100,000 cells randomly subsampled for visualization. E Heatmap of at-
tention scores across 66 coronal slices. F Heatmap of attention scores across 23 sagittal slices. G Bar plots showing
z-axis reconstruction performance (PCC, NMSE, and MR) for coronal (top) and sagittal (bottom) mouse brains
Recognizing the inherent distinctions between transcriptome and pathological phe-
notypes, we deconvoluted [41] each spot with scRNA-seq [42] data to facilitate spatial
domain annotation (Additional file 1: Fig. $23). STAIR's spatial regions were annotated
as connective tissue, immune cancer, breast glands, adipose tissue, fibrous tissue near the
tumor, invasive cancer, and two in situ cancer regions (Fig. 8B). In contrast, STAligner
failed to differentiate the in situ cancer area from the invasive cancer area (cluster 0)
(Additional file 1: Fig. S22B). STitch3D could not distinguish between the two in situ
cancer areas (cluster 4). PRECAST struggled to separate the two spatially distinct in situ
cancer areas (cluster 2, 3, and 5). Additionally, none of them could detect a heteroge-
neous region near tumor with fewer cancer cells and more immune cells (cluster 7).
Next, we reconstructed the 3D coordinates. The inferred z-axis distance, at 0.52/0.43,
closely corresponded the true distance ratio. We then aligned the x-axis and y-axis posi-
tions in the order of the z-axis, revealing a continuous structure for each spatial region
in the 3D space (Fig. 8C). While STAligner and STitch3D cannot infer z-axis, we com-
pared STAIR with them in 2D coordinates alignment (Additional file 1: Fig. $22D) and
employed LISI metric to assess the spatial clustered pattern of domains in the stacked
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Fig.8 3D reconstruction and analysis of HER2 + breast cancer slices. A Annotations of slice H1 in the original study
[40] into six distinct categories: invasive cancer (red), adipose tissue (cyan), connective tissue (blue), breast glands
(green), in situ cancer (orange) and immune infiltrates (yellow). B 2D spatial visualization shows the domains identi-
fied by STAIR in slice H1. That of the other two slices are displayed in Fig. S6B. C Visualization of reconstructed 3D
coordinates, colored by spatial domains. D Pseudo-time of each spot inferred by Monocle3 based on spatial em-
bedding from STAIR. E Heatmap displaying genes with expression changes along the Monocle-derived pseudo-
time, with spots ordered by pseudo-time. F Boxplot shows the pseudo-time of the spots in in situ cancer-1 (left)
and invasive cancer (right) for each slice. In the boxplot, the center line denotes the median, box limits denote the
upper and lower quartiles, and whiskers denote the 1.5 x interquartile range

2D space, which was a comprehensive measure of spatial domain identification and 2D
coordinates alignment (Additional file 1: Fig. S22E). STAIR showed best performance
with the lowest median LISI value of 1.53.

Furthermore, we examined developmental trajectories [43] and 3D heterogeneity of
tumor-associated domains. To select the initial domain of the developmental trajectory,
we conducted a differential expression analysis of two in situ cancer regions (Additional
file 1: Fig. S24A). In situ cancer-1, marked by high expression of the ERBB2 [44] gene
and S100 family genes [45], showcased stronger malignancy and invasive potential. In
contrast, in situ cancer-2, chosen as the starting region for trajectory inference, showed
a relatively lower malignancy and a higher immune level, confirmed by overexpressed
HLA family [46] genes and enriched immune cells. The trajectory unveiled a progres-
sion from in situ cancer-2 to in situ cancer-1, invasive cancer, and fibrous tissue near the
tumor (Fig. 8D, Additional file 1: Fig. $24B), with genes exhibiting expression changes
along the developmental trajectory (Fig. 8E). Notably, within the same area, tumor inva-
sion exhibited inter-slice heterogeneity on the z-axis. For instance, in situ cancer-1 dis-
played a trend from H3 to H1, while in situ cancer-2 exhibited a trend from H1 and H3
to H2. Invasive cancer also followed a progression from H3 to H1 (Fig. 8F, Additional file
1: Fig. S24C).
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To conclude, STAIR discerned tumor heterogeneity that cannot be identified by the
other methods. The 3D reconstruction of tumor tissue enabled analyzing heterogeneity
of invasion paths in a 3D view.

Assimilating new sections into a reference atlas with STAIR

Finally, we evaluated STAIR’s capability to integrate new slices into an existing 3D
atlas, which enhances the utility of reference atlases and allows for their expansion and
updating.

We first evaluated STAIR’s ability to predict the z-axis positions of new slices using
slice-level attention scores (Methods). To this end, STAIR-Emb was first applied to
integrate all slices, capturing higher-order attention scores across the dataset. We then
conducted a leave-one-out cross-validation for z-axis prediction. Specifically, for each
iteration, the true z-axis coordinate of a slice was sequentially masked and predicted
using the z-coordinates of the remaining slices along with the corresponding slice—slice
similarity measures relative to the masked slice. Attention-based predictions were com-
pared with those obtained from simpler slice—slice similarity measures, including total
gene expression correlation and cell type composition similarity. Predictions based on
attention consistently achieved higher PCC and lower NMSE and MR than the simpler
metrics (Additional file 1: Fig. S25). To further test robustness, we applied random crop-
ping to the slices at 20%, 40%, and 60%, and repeated the z-axis prediction (Additional
file 1: Fig. S26), demonstrating that attention-based z-axis prediction remains highly
robust even when slices are partially overlapped.

Next, we evaluated the capability to integrate new slices into the existing 3D atlas.
We integrated a brain slice from the Visium platform into a 3D ST-platform brain atlas
[8], which had been aligned to the Allen mouse common coordinate framework (CCF)
[47] 3D space through experimental information and image registration. We input 40
ST slices and the Visium slice into STAIR-Emb for inter-slice attention scoring (Fig. 9A)
and seamlessly mixed their spatial embeddings (Fig. 9B). By predicting the AP axis
coordinate of the Visium slice, we identified the nearest atlas slice, 20 A, in the 3D atlas.
Using the 2D coordinates of 20 A as a reference template, STAIR-Loc performed scal-
ing, rotation, and translation on the new Visium slice in the DV and ML axes, finally
obtaining CCF 3D coordinates for each Visium spot (Fig. 9C). Additionally, leveraging
detailed spatial anatomical region annotations from the ABA, we secured regional infor-
mation for each Visium spot (Fig. 9D). The UMAP-based visualization revealed internal
clustering of anatomical regions and separation between regions (Fig. 9E). We further
demonstrated the accuracy of the regional annotation for the Visium slice based on the
expression of specific markers, such as Cabp?7, Hpcal, Gpr88, Rora, Mbp and Pmch,
which exhibited high expression in hippocampus, hippocampal formation retrohippo-
campal region, striatum, thalamus, fiber tracts and hypothalamus, respectively. To sum-
marize, STAIR enabled integrating new slices into a 3D atlas which might be generated
from a different ST platform.

Discussion

The rapid advances in ST have ushered in new opportunities for exploring tissue archi-
tecture with gene expression patterns. However, connecting perspectives across discrete
2D slices to enable unambiguous 3D biological comprehension presented persistent
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Fig. 9 Assimilating new sections into a reference atlas. A Heatmap depicting attention scores among 41 mouse
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from the Visium platform. B UMAP visualization of spatial embedding generated by STAIR, with colors indicating
the respective sample of origin. C Visualization of the unified three-dimensional space after aligning the coor-
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respectively. D Spatial visualization of the Visium slice (left) and the ST slice (right) closest to Visium slice, with colors
indicating the anatomical regions of the first (top) and the second (bottom) levels. E UMAP visualization of spatial
embedding generated by STAIR, with colors indicating the anatomical regions of the first (top) and second (bot-
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computational challenges. Here, we introduce STAIR, a unified framework for accurate
spatial embedding and coordinate alignment, enabling pioneering 3D atlas construction
from ST slices only.

The superior performance of STAIR derives from the attention mechanism of its het-
erogeneous graph attention network, which supports dual-level adaptive representation
learning. By capturing both spot- and slice-level dependencies, the attention mechanism
adaptively aggregates spatial features, allowing each spot to determine its affinity with
others based on their spatial context. This results in compact embeddings for shared
anatomical structures across slices while preserving distinct representations for slice-
specific regions, such as the two AOB regions unique to the Slide-seqV2 mouse olfactory
bulb dataset. Consequently, STAIR integrates cross-slice spatial features while retain-
ing the biological heterogeneity of slice-specific regions. This adaptive representation
learning further facilitates physical spatial alignment and reconstruction. The embed-
dings enable the identification of slice anchor pairs for initializing 2D alignments. More-
over, the attention mechanism is highly interpretable and versatile: high-order semantic

modeling captures the physical relationships between slices and provides a novel z-axis
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positioning strategy, supporting multi-sample 3D reconstruction and seamless integra-
tion of new slices.

In addition, STAIR mitigates inter-slice batch effects at the expression level before
constructing and aligning spatial features. Expression profiles from different slices
often exhibit systematic variations introduced by experimental or technical differences.
Directly constructing spatial graphs from such uncorrected data can propagate batch
noise during neighbor aggregation and distort downstream spatial alignment. By incor-
porating a batch-aware nonlinear embedding, STAIR harmonizes expression features
across slices. This early correction substantially reduces technical variation, allowing the
heterogeneous graph that integrates nodes from multiple slices to capture more reliable
neighborhood relationships and produce more accurate spatial features.

We performed several ablation studies to validate the contributions of spot-level and
slice-level attention mechanisms in spatial domain identification, spatial feature inte-
gration, and 2D alignment (Additional file 1: Fig. S4, Additional file 2: Note S1). Addi-
tionally, we quantified running times and GPU memory consumption to demonstrate
STAIR's scalability on large datasets and systematically benchmarked the effects of spot
number, gene number, and slice number on computational resource usage (Additional
file 1: Fig. S17, Additional file 2: Note S2).

While most of the previous ST aligners focus on 2D alignment or integration, STAIR
and STitch3D take multiple parallel ST slices as input and aim to create integrated 3D
spatial atlases. However, STitch3D requires the z-axis coordinates of these parallel slices
as prior information, whereas STAIR does not. This distinction is crucial because shared
z-axis coordinates are often unavailable when slices originate from different samples. By
inferring relative z-axis positions directly from the data, STAIR enables 3D reconstruc-
tion across multi-sample parallel slices without the need for predefined spatial coordi-
nates. We employed three complementary metrics: PCC, RMSE, MR. PCC and RMSE
assess the accuracy of continuous z-position estimation, while MR evaluates errors in
discrete slice ordering. STAIR achieves extremely high correlation and very low RMSE
when compared with ground-truth z-coordinates, even on the most challenging datas-
ets such as the MERFISH coronal mouse brain and locally cropped scenarios. In con-
trast, MR is inherently more sensitive, particularly in densely sampled or locally cropped
datasets, where adjacent slices exhibit high morphological and transcriptional similarity.
In such cases, even minimal deviations in continuous space may result in larger appar-
ent disordering. Additionally, STAIR-init and STAligner both selected spots pairs with
similar features to guide physical alignment. However, STAligner constrains spot pairs
in manually selected regions, which may not coincide with the regions that would yield
optimal results. This approach also narrows the range of point pair selection, which
may lead to some areas failing to find matching point pairs. For instance, among the
13 regions identified by STAlianger, only four regions could find matching point pairs.
We found that even the optimal STAligner alignment result still exhibited weaknesses,
which may be related to the limited effectiveness of STAligner's feature alignment.

Despite these advances, STAIR has several limitations that warrant further investiga-
tion. First, in 2D alignment, STAIR-Loc assumes that global tissue contours and strongly
aggregated regions are preserved across consecutive slices. This assumption gener-
ally holds for whole organs or tissues prepared for 3D reconstruction (e.g., the mouse
brain and embryo datasets described above). However, when slices are sampled from
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manually dissected regions or when the tissue area exceeds the field of view, consistent
contours may be absent. In such cases, STAIR may face challenges, highlighting the need
for future methods capable of handling partial overlap or incomplete structural conti-
nuity. Second, in z-axis position reconstruction, STAIR assumes that slices are approxi-
mately parallel. While this simplification facilitates computational inference, it fails to
capture common scenarios where sections are non-parallel or cut at varying angles dur-
ing tissue preparation. Extending z-axis inference to accommodate non-parallel slices
would therefore be highly valuable. Moreover, when the cutting angle is unknown, its
estimation becomes critical for achieving accurate alignment, for example, in integrat-
ing sagittal and coronal ST slices to construct a dense 3D molecular atlas of the mouse
brain. This estimation is particularly challenging when relying solely on the relatively
sparse ST spots. In such cases, incorporating H&E-stained histological images, which
preserve continuous tissue morphology, could offer a promising solution. Third, the
reconstructed 3D atlases produced by current methods, including those generated by
STAIR, may exhibit a slight straightening effect, known as the “banana slicing problem”
[48]. This phenomenon arises because, without incorporating external geometric pri-
ors, a curved 3D structure cannot be fully recovered from a series of 2D cross-sectional
slices. As STAIR currently does not assume any prior knowledge of global curvature, it
approximates the overall structure as linear. Future extensions could integrate external
or shape-based priors, such as tissue contours or MRI-derived reference geometries, to
regularize global structure and recover the natural anatomical curvature of the recon-
structed tissue. Finally, regarding the assimilation of new slices, integrating an additional
slice currently requires retraining the model jointly with the new slice and the existing
atlas, rather than allowing zero-shot generalization. While this design ensures accurate
integration by leveraging global slice-to-slice relationships, it increases computational
cost and constrains scalability in rapidly growing datasets. Future extensions may focus
on enabling efficient zero-shot or incremental assimilation strategies, which would fur-
ther enhance the practicality of STAIR for large-scale, dynamic 3D atlas construction.

Conclusions

In conclusion, STAIR provides a unified algorithmic approach that advances the analy-
sis of multi-slice ST data, encompassing alignment, integration, and 3D reconstruction.
This advancement enables the creation of comprehensive spatial atlases for a diverse
array of organs, thereby facilitating the exploration of molecular mechanisms underly-
ing tissue structure phenotypes within a 3D spatial context. Additionally, STAIR inte-
grates additional slices into the existing 3D atlas, facilitating the expansion of the atlas
and computationally enhancing its practical value.

Methods

STAIR algorithm

STAIR is designed to align spatial features and 3D coordinates across multiple slices.
Assume there are S slices to be aligned, denoted as O1,0Oas, - -, Os, where each slice
contains N1, Na,--- , N, spots, respectively. Among these slices, there are G common
genes. Consequently, the gene expression data can be represented as an N x G dimen-
sional matrix X, where N = N7 + N3 + - - - + Ny is the total number of spots across all
slices. The spatial coordinate data is stored in an N X 2 or N X 3 dimensional matrix Y/,
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depending on whether the z-dimension exists, and an N x 2 coordinate matrix is suffi-
cient as input for STAIR. The respective gene expression matrices and spatial coordinate
matrices of 01,04, -+ ,Oy can be represented as X, Xo,---, X, and Y7,Y5, -, Y,
respectively.

Data preprocessing

The raw gene expression counts in X are normalized by library size and then log-
transformed to obtain the normalized expression matrix X. To remove batch
effects in expression features across various slices, we employed an autoencoder
alongside batch annotation [17] B. If the n th spot is from the slice O, we set
bns = 1; otherwise, we set b, = 0. Given the assumptions of negative binomial (NB)
or zero-inflated negative binomial (ZINB) distributions in gene expression, the pre-
processing framework is:

Z = fr (X||B) 1)
Z' = fp1(Z||B) (2)
(H: Ra P) :fDZ(Z/) (3)

where || is the concatenation operation. The encoder fg, containing two layers, com-
presses the expression matrix into a m-dimensional low-dimensional feature matrix Z.
The decoder consists of fp1 and fps. fp1 decodes Z and batch information into a m/
-dimensional feature matrix Z’, followed by fps which decodes the parameters of the
NB distribution (R, P) or the ZINB distribution (II, R, P) based on Z’. The final expres-
sion features Z is obtained by minimizing the reconstruction loss between X and the
NB/ZINB distribution parameterized by (R, P)/(IL, R, P). The loss function is the NB/
ZINB-based negative log-likelihood.

Spatial embedding integration
The STAIR-Emb module uses a heterogeneous graph attention network [16] to integrate
spatial embeddings across slices.

Construction of heterogeneous graph We construct a heterogeneous graph where all
spots across slices serve as nodes, whose attributes are determined by their original slices.
Different approaches are employed to establish edges between spots within the same slice
and spots across different slices.

For spots within the same slice, we construct homogeneous edges based on their phys-
ical location. For a spot with index
i in slice Oy, the set of its intra-slice neighbors N; is identified by K-Nearest Neighbor
(KNN) based on spatial coordinates. The intra-slice adjacency relationships in Oy is
stored in an adjacency matrix A;.

For spots from different slices, since their relative physical coordinates are unknown,
we construct heterogeneous edges based on the expression similarity obtained in the
preprocessing step. Only nodes with highly consistent expression features are con-
nected. For spots ¢ from slice Oy and j from slice O;, the edge exists if their expression
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similarity z; - z; > t. We usually set t = 0.9 and denote the inter-slice neighbors of spot
i from slice Oy as NI7.

Intra-slice information aggregation To capture the spatial features of each spot, we
first aggregate information from intra-slice neighbors based on homogeneous edges
independently for each slice. We employ two graph attention network (GAT) layers [49]
to derive the intra-slice representation of spatial features. For slice Oy, its intra-slice rep-

resentation U"°™ can be expressed as:

Uhem = GAT, (GAT, (Z1, Ar) , Ap) @

where Z; represents the expression feature of slice O; derived from the preprocessing
step, while A; denotes its corresponding adjacency matrix. Furthermore, the intra-slice
representation of spot i is denoted as u?°™, and the collective intra-slice representation
of all slices, consisting of U™, Uhem ... ko™ is denoted as U™,

In each GAT layer, denoting the input feature as N X m( dimensional matrix
H = (hi,ho,...,hy) and the output feature as N x mg/ dimensional matrix
Ht = (hat,hat, ..., hn'), then for spot ¢ with input feature h;, its output feature h;/ can

be formulated as:

hy=ELU [ > a;;W h; (5)

JEN;

where W is the mg/ X mo dimensional weight matrix, a;; is the normalized attention
score using the SoftMax function:

exp(eq;)

Q= Softmaxj (ei) = 3 e ©)

keN;
where e;; = a” (Wh; | Why), a is a learnable 2 mg/ dimensional vector, and || denotes

the concatenation operation.

Inter-slice information aggregation Further, we employ spot and slice level attention
to aggregate inter-slice information adaptively.

First, we learn spot-level attention. For two spots i and j from slices O; and O; con-
nected by heterogeneous edge, the corresponding spot-level attention e{j] represents the

importance of spot j to i:

el = LeakyReLU (q7 ;W7 yul ™ [[W7 ulto™]) (7)

where W}, and W?, are m x m dimensional weight matrices specific to slice pairs,
qr7 is a learnable 2/ dimensional vector. The final inter-slice spot level attention o} is

obtained by normalizing efj‘-] :
UiIJ = ReLU (ZjENiIJaiI]J . U?Om) . (8)

1J _ 1J) _ exp(eij)
a;; = Softmaz; (eij ) = S Nue’ZP(eI;;] . 9)
EN ik
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For node i in slice Oy, its spot-level inter-slice representation based on neighbors in slice
Oy is:

Then, we employ slice-level attention mechanisms to aggregate the spot-level
inter-slice representations, yielding the final inter-slice representation. Different
slices contribute unequally to target slice, and we adaptively learn how much each
slice contributes to others. For the slice Oy to be learned, the slice-level importance
of slice Oy to Oy is:

Wrg = 3 2ico,q" - tanh(W - uf’ +b), (10)

where W and b are m x m dimensional weight matrix and m dimensional bias vec-
tor, g is a learnable m dimensional vector. Then, we normalize wy; to get the final
slice level attention score:

exp(wry)

BIJ = Z[ﬁgexp(w”() ’ (11)

Therefore, the final inter-slice representation of slice Oy based on other slices is:

Upet =3 . BraU". (12)
The inter-slice representation of all slices consisting of U*t, ULet ... Ukt is denoted
as Uhet,

Model learning and training The final spatial feature matrix U is obtained by combin-
ing the intra-slice representation U*°™ and inter-slice representation U"¢*:

U=X-Uhom 4 (1-\)- U, (13)

where )\ weights the homogeneous and heterogeneous components with default value
0.8. The model is trained to ensure U reliably represents the original spatial gene expres-
sion features Z. The objective function is defined as the mean squared error between U
and Z:

Loss = MSE(U, Z) (14)

In the training process, m is set to 32, m’ is set to 128. The Adaptive Moment Estimation
(Adam) optimizer is used for training with a learning rate of 0.001. The default number
of iterations is 150. Additionally, the pre-processing module is trained independently,
with a learning rate of 0.001 and 100 iterations.

Slice-level attention-based reconstruction and prediction in z-axis

The attention score at slice level, denoted as 5, characterizes the collective impact of
slice Oy on O; within the spatial embedding learning process. This encapsulates intri-
cate higher-order spatial semantic insights. Notably, the strong correlation between
these scores and the actual inter-slice distances suggests the potential for inferring the
physical positions of slices.

De novo z-axis reconstruction for multiple slices When lacking information
about the third-dimensional coordinates (y(13), e ,y(fg), e yf’;)) of the parallel slices
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01,03, --- , Oy, we can reconstruct their positional relationships based on the inter-slice
attention scores. Specifically, we start by defining the semantic distances between slices
Ojand Oy asdyy=1— w, and then construct a MST based on Kruskal algo-
rithm [20] using network package implemented in Python. Subsequently, we select the
given root slice Oy and set its position as ﬂ(ls) = 0. The position of remaining nodes is
then determined by adding the distance between each node and its parent node. Finally,
the positions are normalized to the range of 0 to 1, yielding the reconstructed results

@(13), gj(zg) e ﬂ(%)) Furthermore, for comparison with actual coordinates in the article,
we additionally scale the normalized distances (ﬂ(ls), 17(23) S ﬂ(%)) to match the real coor-

dinate range.

Z-axis prediction for new slice When the z-axis coordinates (y(13)7 e ,y(13), e y%))

are known, in order to align the new slice O,,,, into the unified 3D space, we predict
yzge)w based on the attention vectors between O,,.,, and O1,03, -, O, denoted as

ﬁl = (Bnew,la Bnew,% te »5new,5) and ﬁ2 = (Bl,newa ﬁQ,newy e 7ﬂS,new)~
We first sort the elements of 51 and 33 in descending order, and choose the top M ele-

ments 3 = (Brew,r1s* " Bew,r1,) and By = (BR2 news "+ BR2, new)- Following this,
we identify the intersection of these element indices {R1,- -, Ry}, where M7 < M.
Finally, we perform weighted average on the z-axis corresponding to Ry, - , Ry to get
the prediction of y&e)“’:
ZKG{R R }My{;
U5 = T (15)
Ke{Ry, Ry} z

Spatial location alignment in x-axis and y-axis

The STAIR-Loc module implements a two-stage approach for 2D alignment along the
x-axis and y-axis. In the initial stage, spatial features are leveraged to identify precisely
matched spot pairs, from which the initial transformation matrix is derived. The fine
alignment stage begins by identifying informative spots that effectively capture both
global and local information within slices. Subsequently, the ICP algorithm [19] is
applied to these spots to obtain the final alignment results.

Initial alignment Consider slice O; with Ny spots and slice O y with N spots, along with
their respective spatial feature sets {u{, ub, - 7“5\@ } and {ul‘], uy, u;{,J } First, we
measure the cosine similarity of spatial embeddings between spots from different slices.
The mutual nearest neighbors (MNN) of k = 1 located in different slices form pairs for

the initial alignment, resulting in curated pairs {(i1, j1) , (i2,72) , -+ , (in, jn )} along with
their 2D coordinates {(yi]1 , yfl) , (yi]Z, ijz) R (yZI , yJJ)} If the slices are from differ-
ent platforms, scaling may be necessary. We use the distance between {i1, i2,- - , 5} and
that between {j1, j2, - - , jn } to determine the scaling factor:
scale = Mediany, i, e (16)
’L/I 71/1

Tigy  Tikg
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Subsequently, we minimize the 2D distance of each pair to determine the optimal initial
rotation matrix R° and translation vector ¢:

Lossinis = kz—:l lyl — (Ry], +1) ‘2, (17)

Singular value decomposition [50] solves for R? and t°. All spots are then aligned to

their targets accordingly.

Fine alignment The fine alignment stage involves three main steps. First, we select
highly concentrated regions that are common to both slices, according to median of local
inverse simpson’s index (LISI) value which implemented in R package lisi. Subsequently,
we identify the concave hulls [51] corresponding to the chosen regions and the slices.
These concave hulls serve to depict both the local attributes of the region and the broader
shape characteristics of the entire slice. Finally, ICP [19] algorithm is employed on these
sets of informative spots to achieve precise fine registration, resulting in our desired

alignment outcome.

Aligning new brain slices into existing ABA atlases

We employed a dataset consisting of 40 ST coronal brain slices with CCF 3D coordinate
information, derived from a previous study [8], to serve as a foundational reference of
whole-brain framework. To obtain the CCF 3D coordinates and anatomical region anno-
tations of each spot in new slice, we incorporated it into the reference dataset through
the following steps.

First, we integrate the spatial embeddings of the new slice O,,¢,, with the reference set
{O1, 04, - - -, Oy0}, obtaining the attention scores associated with the O,,.,, and each ref-
erence slice. By applying formula (15), we derive the predicted AP coordinate of O,,cq,
denoted as y}%’. Then, we perform two-stage alignment with scaling to align the coor-
dinates in ML and DV plane (see Spatial location alignment), effectively integrating the
3D coordinates of O,,,, into the CCF. Finally, anatomical regions are assigned to each
new spot based on location-specific information within the ABA annotation file annota-
tion_25.nrrd from https://portal.brain-map.org/, establishing a mapping of the anatomi-

cal context for slice O,,cq.

Toolkit for ST analysis

Clustering for spatial domains

Clustering is conducted on integrated spatial embeddings to obtain unified spatial
domains across ST slices. We employ mClust [52] clustering method implemented in R
package rmclust v5.4.9.

Spatial trajectory inference

Trajectory inference based on spatial embeddings is used to track the development in
spatial dimension. We utilize Monocle3 [43] v1.0.0 to perform the pseudo time inference
for each spot based on UMAP derived from spatial embedding of STAIR by applying
learn_graph and order_cells in package. Function graph_test is employed to find genes

that change with pseudo time.
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Deconvolution

For HER2 +breast cancer dataset, we perform deconvolution to analyze the cell type
composition using software Cell2location [41] v0.1.3 and annotated scRNA-seq dataset
[42]. Cell2location is run according to the tutorial and default parameters.

Differential expression analysis

We employ Seurat [53] v4.2.1 to perform differential expression analysis. Differential
expression analysis is used to identify cluster-specific marker genes where all the clusters
are pairwise compared using the Wilcoxon method. Each identified marker gene was
expressed in a minimum of 25% of cells and at a minimum log fold change threshold of
0.25.

Evaluation

Evaluation of spatial embedding alignment

Adjusted rand index (ARI) ARI measures the consistency between spatial domains
identified by different algorithms and the known anatomical region labels. Given the con-
tingency table of intersections between the algorithm-generated domains and annota-
tion-based labels, it is calculated as:

=) (i)
TSIEAE AT EO AT 6

where n;;,a; and b; are values from the contingency table. ARI values range from -1 to

ARI =

(18)

1. Higher ARI indicates greater agreement with the ground truth annotations.

Average silhouette width (ASW) ASW evaluates how well the features match true clus-
ters in the data. For every spot i, Silhouette width S (i) is calculated as:

N b(i)—a(4)
S (1) = max{atsmT "

where a(i) is the average distance between 4 and spots in its own cluster, and b(7) is that
to adjacent cluster spots. ASW values range from -1 to 1, with greater ASW indicates
better match.

In this paper, we employ ASW gomain and ASWiaicn to measure the fitness of spa-
tial features to known spatial regions and batches of slices, respectively. A larger
ASW domain and a smaller ASW pq4cr, value represent stronger feature learning and inte-
gration capabilities. To evaluate the comprehensive performance of spatial features, we
calculated the harmonic mean ASW g1 of ASW gomain and 1 — ASW paicn:

_ 2(01-=ASWhrateh) ASW domain
ASW P = TA5W o ron A ASWagman (20)

Higher ASW gy indicates stronger comprehensive ability of feature integration and bio-
logical specificity retention.

Evaluation of spatial alignment in x-axis and y-axis
To assess STAIR's capability for spatial alignment, we conducted simulations involv-
ing multiple slices, each with known 3D coordinates. Specifically, we maintained
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the spatial location of the first slice unchanged, while applying random rotations
and translations to the remaining slices. Rotation angle 6 € (0,7), translation dis-
tance t(l) € (7(1(1),&(1)),15(2) € (7a(2),a(2)), where ay = max(y(l)) — min(y(l)),
a(z) = max(y(zy) — min(y(s)). Note that the ground truth rotation angle and translation
distance of S — 1 slices are {62,6%,--- 69} and { (1 Y (2)) (t(l)7 (2)) ( () (2))}

respectively. The error of rotation and translation are:

1
Ap =5

~
L0

‘91 — 0! ’ (1)

Ay

19 2 1 o)
=Py (thy =)+ (b ~ ) (22)

where 6! and (f(ll),z%)) are rotation angle and translation distance of slice A; obtained

by the algorithm to be evaluated, respectively.

Evaluation of spatial domain identification and 2D coordinate alignment in HER2 + breast
cancer

LISI measures the degree of local mixing, and we use it to evaluate the spatial aggrega-
tion pattern of domains in stacked 2D space. For each spot ¢ with spatial domain label ,
LISI value of this spot is formulated as:

LISI (i) = m (23)
where p; (1) is the probability that the spatial domain label exists in the local neighbor-
hood of sample , and L is the set of spatial domains. Local neighborhoods are selected
by stacked 2D coordinates derived by 2D alignment methods. The value of LISI is in the
range of [1,00), and smaller LISI indicates better aggregation pattern.

Evaluation of z-axis reconstruction and prediction

We employed three metrics to evaluate the performance of z-axis reconstruction and
prediction: the Pearson correlation coefficient (PCC), normalized mean squared error
(NMSE), and misordering rate (MR). Denoting the ground truth z-axis coordinate of
the S slices as {y%3)7y%3), e ,y(Sg)}, and the reconstructed or predicted outcomes are

{?%3) , ??3), e ,37(83) }. The PCC and NMSE values are calculated as:

Z}ll (y(l:s) *y(-‘i)) (;(13) *;/\(3)>

—— . - (24)
S (vl @) 0 (Vs v

ZS (y(S) g(ﬁ))z
NMSE ===~ "~/ 25
Z (y(s) y(i))z (25)

— S = S ~
where §(3) = DI y{s) and y(s) = 5 L= y{3)‘
For the MR, we first sort slices according to their true coordinates {y(13)} and recon-

PCC =

structed or predicted coordinates {§(13)} Let w(I) and 7 (I) denote the ranking
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positions of slice I in the true and predicted orders, respectively. The MR is then defined
as the proportion of slices with mismatched ranks:

s
MR:%IZIH(W(I)#%(I)) (26)
where I (+) is the indicator function.

Assessment of alternative methods

We conducted a comparative evaluation of STAIR against other alignment methods,
including STAligner, Stitch3D, PRECAST, and PASTE. In our assessment, we employed
the default parameters for all methods unless specific parameters were outlined in the
original text or tutorial.

STAligner STAligner integrates ST data across different conditions, technologies, and
developmental stages. It employs STAGATE and triplet loss to integrate the ST datas-
ets until batch-corrected embeddings are generated. It further considers shared spatial
domain and MNNs identified by STAligner as corresponding pairs to guide the 2D align-
ment. We downloaded the package STAligner v1.0.0 from https://github.com/zhoux85/
STAligner, and ran STAligner following its tutorial https://staligner.readthedocs.io/en/la
test/index.html.

STitch3D STitch3D first unified 3D spatial coordinates for spots using ICP or PASTE,
followed by graph construction based on 3D coordinates. It performed spatial embedding
learning and integration by graph attention network and slice- and gene-specific param-
eters. We downloaded the package Stitch3D v1.0.3 from https://github.com/YangLabHK
UST/STitch3D, and ran STitch3D following https://stitch3d-tutorial.readthedocs.io/en/l
atest/tutorials/index.html. Given the requirement for scRNA-seq datasets from the same
tissue, we utilized single cell DLPFC and HER2 + breast cancer data accessed at the Gene
Expression Omnibus (GEO) under the accession code GSE144136 [54] and GSE176078
[55], respectively.

PRECAST PRECAST is a probabilistic method for spatial embedding learning, cluster-
ing, and alignment. We downloaded the R package PRECAST v1.6.1 from https://github
.com/feiyoung/PRECAST/, and ran PRECAST following its tutorial https://feiyoung.gith
ub.io/PRECAST/index.html

PASTE PASTE provides the flexibility to align two slices either through pairwise align-
ment or to simultaneously align multiple slices using center alignment. We opted for
pairwise alignment in our testing, as other approaches also employ pairwise processes.
In pairwise slice alignment, it aims to find the best possible way to connect spots in one
slice with spots in another slice, followed by constructing a stacked 3D alignment of a
tissue. The connection, denoted as II, is chosen to reduce both the differences in gene
expression patterns between connected spots from different slices and the differences in
physical distances between connected spots within the same slice. Parameter o was used
to balance these two differences, and we set its default value of & = 0.1 in our test. We
download the package PASTE v1.3.0 from https://github.com/raphael-group/paste/tree/
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main, and ran PASTE following https://github.com/raphael-group/paste/tree/main/doc
s/source/notebooks.
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