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Deep generative optimization of mRNA
codon sequences for enhanced mRNA
translation and therapeutic efficacy

Yupeng Li1,10, Fan Wang1,10, Jiaqi Yang1, Zirong Han2,3, Linfeng Chen1,
Wenbing Jiang 1, Hao Zhou1, Tong Li1, Zehua Tang1, Jianxiang Deng 1, Xin He1,
Gaofeng Zha4, Zhaoyu Hu5, Yong Hu5, Linping Wu 6, Changyou Zhan 7,
Caijun Sun 2,3,8,9, Yao He 1 & Zhi Xie 1

Messenger RNA (mRNA) therapeutics show immense promise, but their effi-
cacy is limited by suboptimal protein expression. Here, we present RiboDe-
code, a deep learning framework that generates mRNA codon sequences for
enhanced mRNA translation. RiboDecode introduces several advances,
including direct learning from large-scale ribosome profiling data and gen-
erative exploration of a large sequence space. In silico analysis demonstrates
RiboDecode’s robust predictive accuracy for unseen genes and cellular
environments. In vitro experiments showed substantial improvements in
protein expression, significantly outperforming past methods. In addition,
RiboDecode enables mRNA design with consideration of cellular context and
demonstrates robust performance across different mRNA formats, including
m1Ψ-modified and circular mRNAs, an important feature for mRNA ther-
apeutics. In vivo mouse studies showed that optimized influenza hemagglu-
tinin mRNAs induce ten times stronger neutralizing antibody responses
against influenza virus compared to the unoptimized sequence. In an optic
nerve crush model, optimized nerve growth factor mRNAs achieve equivalent
neuroprotection of retinal ganglion cells at one-fifth the dose of the unopti-
mized sequence. Collectively, RiboDecode represents a paradigm shift from
rule-based to a data-driven, context-aware approach for mRNA therapeutic
applications, enabling the development of more potent and dose-efficient
treatments.

Messenger RNA (mRNA) therapy has emerged as a promising
approach for treating diseases. This innovative therapeutic strategy
harnesses the cell’s protein synthesis machinery to produce desired
proteins encoded by the deliveredmRNA1–3, leading to the application
of mRNA therapies in various fields, such as vaccine development and
protein replacement therapy4. The successful development and
deployment of mRNA vaccines during the COVID-19 pandemic have
further highlighted the transformative potential of this technology5.

Despite the remarkable progress in mRNA vaccines, achieving
efficient and consistent protein translation from delivered mRNA
molecules remains a key challenge, particularly critical for protein
replacement therapy, where sustained, precise, and often higher levels
of protein expression are required in specific cellular contexts. How-
ever, the biological instability of mRNA and the complex regulatory
mechanisms governing mRNA translation in cells can lead to sub-
optimal protein expression6–8. Therefore, improving the expression of
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mRNA is a key challenge for enhancing the therapeutic efficacy and
reducing the required dose of mRNA-based treatments.

An amino acid can be encoded by multiple synonymous codons,
ranging from one to six codons per amino acid. Codon optimization is
a strategy to improve protein expression by changing the synonymous
codon of an mRNA molecule while maintaining the encoded amino
acid sequence. The choice of synonymous codons can largely impact
the efficiency of mRNA translation and the stability of the mRNA
molecule6,7. For example, it has been shown that optimal codon usage
can enhance ribosome engagement and increase translation elonga-
tion rates, ultimately leading to higher protein production8. Addi-
tionally, codon choice can influencemRNA structure. Previous studies
have demonstrated that mRNA structure critically influences its sta-
bility in vivo9, in solution10, and translation11. Therefore, codon opti-
mization is a critical step in the design of mRNA-based therapies to
achieve maximal protein production, leading to better therapeutic
efficacy.

Computational tools have been developed for codon optimiza-
tion, most of which were designed for DNA, employing various stra-
tegies to select optimal codons. Pastmethods rely on codon usage bias
derived from highly expressed genes in a given species, such as codon
adaptation index (CAI)12. Thesemethods aim tomimic the codonusage
patterns of efficiently translated endogenous mRNAs. More recently,
LinearDesign6 has been developed for mRNA optimization, aiming to
jointly optimize translation and mRNA stability by increasing CAI and
reducing minimum free energy (MFE)6, which is a computational
metric for evaluating mRNA secondary structure. LinearDesign uses a
linear programming approach to explore a wider space of sequence
variants compared to previous methods and showed superior perfor-
mance over the previous codon optimization methods. Additionally,
other indices have been used to guide sequence optimization. For
instance, higher GC content (GC%) has been associated with enhanced
gene expression13.

Despite the development of the previous methods, several lim-
itations hinder their effectiveness in consistently improving the pro-
tein expression of mRNA molecules. Firstly, the existing methods
primarily rely on predefined sequence features, such as CAI, to guide
codon selection. However, thesemetrics often fail to correlatewith the
experimentally measured protein expression levels14,15, indicating that
they do not accurately capture the complex factors governing mRNA
translation. Secondly, the existingmethods donot adequately account
for the activity of translational regulators that influence mRNA trans-
lation, such as translation factors and RNA-binding proteins16,17. This
lack of context-awareoptimizationmay reduce the effectiveness of the
optimized mRNA sequences in specific cellular environments. Fur-
thermore, the existing methods explore a limited space of codon
sequences due to computational constraints and the reliance on pre-
defined rules. This restricted search space may prevent the discovery
of previously unexplored and highly optimized sequences that could
potentially yield significant improvements in protein expression.

Deep learning has achieved remarkable success in tasks such as
image recognition, natural language processing, and protein structure
prediction, where it has outperformed conventional algorithms by
learning complex patterns and relationships from vast amounts of
data18,19. In the context of mRNA codon optimization, a deep learning
approach may enable the model to capture the complex interplay
between codon usage and cellular context, without relying on pre-
defined rules. Moreover, deep learning models can explore a vast
sequence space and discover novel patterns that may not be apparent
to human experts or accessible through traditional optimization
methods20. This ability has been exemplified in the field of protein
engineering, where deep learning has been used to design novel pro-
tein sequences with improved stability, binding affinity, and catalytic
activity21–23. Recent advances in codonoptimization researchhave seen
the emergence of deep learning-based algorithms, particularly large

language models trained on cross-species nucleotide sequences.
These models have been implemented for predictive modeling of
mRNA translation efficiency and degradation kinetics24,25. Never-
theless, there persists an urgent demand for developing a rigorously
validated optimization framework to improvemRNA-encoded protein
expression specifically tailored for therapeutic applications.

Massive parallel reporter assays (MPRA) are commonly used to
study the effects of regulatory sequences on gene expression26. How-
ever, it is not suitable for optimizing coding sequences due to the short
sequence limitation, which is generally less than 300 base pairs, for
high-throughput DNA synthesis. Additionally, MPRA experiments
often rely on artificial reporter constructs and may not fully recapitu-
late the complex regulatory landscape of endogenous mRNA mole-
cules. Ribosome profiling sequencing (Ribo-seq) is a powerful
experimental technique that provides a snapshot of actively translat-
ing ribosomes on mRNA molecules27,28, where the translation level of
an mRNA can be derived from the reads per kilobase per million
(RPKM) of Ribo-seq. Recent studies have leveraged Ribo-seq to
develop translation-focused deep learning models29–31. For instance,
RiboNN predicts mRNA translation efficiency in mammalian cells by
integrating mRNA sequences with ribosome profiling data, revealing
translation-stability regulatory mechanisms32. However, the field criti-
cally requires a rational design framework that translates data-derived
translational signatures into codon optimization strategies, enabling
high-throughput exploration of sequence space and generation of
optimized mRNA constructs for therapeutic development.

In this study, we present RiboDecode, a deep learning model for
mRNA codonoptimization that enhancesmRNA translation by directly
learning complex relationship of mRNA codon sequences to their
translation level from large-scale Ribo-seq data. Our prediction model
demonstrated robust performance, while analysis of RiboDecode’s
optimization strategies revealed a complex interplay between
sequence characteristics and translation. In vitro experiments showed
significantly increased in mRNA translation and protein expression,
outperforming past methods. RiboDecode also considered cellular
context, andmaintained robust performance across unmodified, m1Ψ-
modified, and circular mRNA formats. In vivo, optimized influenza
virus hemagglutinin (HA) mRNA induced approximately ten times
stronger neutralizing antibody responses in mice, while optimized
nerve growth factor (NGF) mRNA achieved equivalent neuroprotec-
tion of retinal ganglion cells at one-fifth the dose in an optic nerve
crushmousemodel. This data-driven approach to codon optimization
advances our understanding of mRNA translation and facilitates the
development of more effective mRNA therapeutics.

Results
RiboDecode is a deep learning framework for mRNA codon
optimization
RiboDecode is a deep learning-based framework for optimizingmRNA
codon sequences. It integrates three components: a translation pre-
diction model, an MFE prediction model, and a codon optimizer that
explores and optimizes codon choices guided by the prediction
models (Fig. 1a).

The translation predictionmodel estimates the translation level of
a given codon sequence by learning the translational expression of
diverse mRNA sequences from Ribo-seq experiments (Figs. 1b and S1,
“Methods”). In contrast to previous tools that rely on optimizing pre-
defined features such as CAI, our deep learning model automatically
extracts relevant features by training on 320 paired Ribo-seq and RNA
sequencing (RNA-seq) datasets from 24 different human tissues and
cell lines, encompassing translation measurements of over 10,000
mRNAs per dataset (Supplementary Data 1 and “Methods”)33,34. In
addition, the model incorporates not only codon sequences but also
mRNA abundances and cellular context that is presented by gene
expression profiles from RNA-seq (“Methods”). This approach enables
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the prediction of mRNA translation by jointly considering these
important factors influencing translation.

To address mRNA stability, we developed an MFE prediction
model. Current MFE prediction tools, such as RNAfold35 and
Linearfold36, use dynamic programming. However, these methods are
non-differentiable and thus incompatible with our codon optimizer
described below. Our MFE model employs a deep neural network
architecture and undergoes an iterative optimization process, to
simultaneously improve its predictive capability and optimize
sequences for lower MFE values (Fig. S2, “Methods”).

The codon optimizer of RiboDecode begins with the original
codon sequence of a given protein (Fig. 1c). The prediction models
then predict a fitness score for this sequence. Using a gradient ascent
optimization approach based on activation maximization (AM)37, the
optimizer adjusts the codon distribution tomaximize the fitness score
(Fig. S3). A synonymous codon regularizer ensures that only synon-
ymous codons encoding the same amino acids as the original
sequence are considered, preserving the protein’s amino acid
sequence. Through iterative cycles of sequence generation, predic-
tion, and optimization, the system produces codon sequences with
improved properties. RiboDecode can optimize mRNA translation,

stability or both, by interfacing with both the translation and MFE
models. This uses a parameter, w: w =0 optimizes translation only,
w = 1 optimizes MFE only, and a value 0 <w < 1 jointly optimizes both
(“Methods”).

By combining data-driven predictions with high-throughput
sequence generation, RiboDecode overcomes limitations of conven-
tional heuristic approaches. It enables the exploration of a vast mRNA
codon space, potentially uncovering optimized sequences.

Evaluation of translation prediction model
We first evaluated the RiboDecode’s performance and generalizability
using three cross-validation datasets: “unseen genes”, “unseen envir-
onments”, and “unseen genes and environments”, which represented
unseen genes and unseen cell types during training (Fig. S4, “Meth-
ods”). The model achieved a coefficient of determination (R2) of 0.81,
0.89, and 0.81 for the three datasets, respectively (Fig. 2a), indicating
its robustness and ability to generalize.

To understand the relative importance of the three model inputs,
we performed ablation analysis, revealing that mRNA abundances
were the most important contributor to the prediction of translation
(Fig. 2b and Table S2), in agreement with an early study of yeast
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Fig. 1 | Predictive and generative optimization of RiboDecode. a RiboDecode
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translation. The input includes codon sequences in one-hot encoding, corre-
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predicted translation level of mRNA (see Methods). c Iterative optimization of
codon sequences. RiboDecodepredicts fitness of an original sequence (T = 0), then
uses activationmaximization to generate optimized synonymous variants (T+=1). A
synonymous regularizermaintains amino acid sequence. This process iterates until
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translation that found that the most predictive variable for translation
was the mRNA expression of the gene28. The incorporation of codon
sequences lifted the R2 by 0.15, and further inclusion of cellular
environment improved the R2 by 0.06. The ablation analysis demon-
strated that all the inputs contributed to predicting mRNA translation.

We next investigated whether our model captured complex
sequence features beyond common translation-related metrics. While
our model learned relevant sequence features directly from the raw
codon sequences, we tried to include common translation-related
sequence metrics, including CAI, MFE, and codon frequencies as
additional model inputs and found these metrics did not improve
prediction accuracy (Table S1). This suggested that the model could
capture the sequence patterns that were predictive of translation,
beyond these sequence metrics.

We explored alternative approaches to incorporating cellular
context information.Wedirectly incorporated themeta informationof
Ribo-seq datasets into the model, including cell types and experi-
mental conditions and found it did not improve the performance
(Table S1). This indicated that the gene expression profiles used in the
model were an effective proxy to capture the relevant cellular envir-
onment influencing mRNA translation.

Finally, we investigated the positional importance of coding
sequences in translation prediction. We analyzed the importance of
each nucleotide position for the model’s prediction (“Methods”). The

results showed that the coding sequences close to the translation start
site (TSS) were more important (Fig. 2c). This is consistent with a
general knowledge that codons near TSS have a greater impact on
protein synthesis, by influencing translation initiation8.

Overall, the data-driven approach of RiboDecode enabled robust
predictive capabilities with biological relevance by learning important
sequence patterns directly from the Ribo-seq data.

RiboDecode’s optimization strategies for enhanced mRNA
translation
Having established the efficacy of our translation predictionmodel, we
next explored how this model could be leveraged to generate
sequences with enhanced translation potential. We first generated
codon sequences of Gaussia luciferase (Gluc) (Fig. S5). T-distributed
stochastic neighbor embedding (t-SNE) indicated that the model
established an association between the sequence space and translation
levels (similar to Ribo-seq-derived RPKM values). The red area in the
upper right showed that a wide space of high translation sequences
was explored (Fig. 3a). We next explored how RiboDecode-optimized
translation and stability independently or jointly. A widely used Gluc
sequence was used as a reference for comparison, which had a pre-
dicted translation level of 5.9 and an MFE value of −216 (Fig. 3b). By
optimizing the sequence for translation (w =0), the predicted trans-
lation level increased to around 25. On the other hand, codon

Fig. 2 | Evaluation of the translation prediction model. a Experimentally mea-
sured translation levels by Ribo-seq versus predicted translation levels in the three
validation datasets. The lines denote the linear fit. The translation levels from Ribo-
seq were ln-transformed (see “Methods”). b Ablation analysis shows the contribu-
tions of the three inputs to the prediction model. The table below shows the
ablation status of the inputs, with dots and crosses representing the presence and
absence of corresponding elements, respectively. The points denote the R2 values

from the tenfold cross-validation (n = 10). Data are presented as mean values +/−
SD. c The importance of each nucleotide position for the translation prediction.
The x-axis represents the nucleotide position from the TSS (translation starting
site). Integrated Gradients attribution method was used to obtain the importance
score for each nucleotide position (n = 2000). The line denotes the local poly-
nomial regression fit.
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sequences optimized for MFE (w = 1) reduced the MFE from −150 kcal/
mol to around −350 kcal/mol, with a similar translation level to the
reference. With joint optimization (0<w < 1), RiboDecode explored a
wider sequence space, achieving both enhanced translation and
reducedMFE. Moreover, RiboDecode-generated sequences spanned a
broader embedding space compared to those produced by Ribotree10,
CDSfold38, and LinearDesign (Fig. S6, see “Methods”), suggesting
enhanced sequence diversity. Furthermore, designing Gluc codons for
different cell lines showed that the generated codons had distinct
sequencepatterns for different cellular contexts, reflecting differences
in cellular environment (Fig. S7).

To understand RiboDecode’s optimization strategy, we analyzed
codon usage patterns between generated sequences with enhanced
and reduced translation, as well as between high- and low-translated
endogenous sequences. We found that codons preferentially used in
highly translated endogenous sequences were also favored in
RiboDecode-generated sequences with enhanced translation. Notably,

the differences in codon usage between RiboDecode’s enhanced and
reduced translation sequences were more pronounced than the dif-
ferences observed in endogenous sequences (Fig. 3c, “Methods”). To
assess the generalizability of these findings, we extended our analysis
to multiple genes across various cell types. Consistently, we observed
the same pattern of biased codon usage in all the cases (Fig. S8). This
suggests that RiboDecode not only mimics but amplifies the codon
usage patterns of efficiently translated endogenous mRNAs, poten-
tially leading to even greater improvements in translation.

We next examined how RiboDecode utilized sequence features
during generation and optimization. Analysis of sequence features
across different mRNAs revealed complex and variable relationships
with translation (Figs. 3d and S9, “Methods”). Notably, highly trans-
lated mRNAs generally showed an increase in uridine content (U%),
which may reduce secondary structure formation and facilitate
smoother ribosomemovement during translation7. Additionally, these
mRNAs mostly exhibited a decrease in Effective Number of Codons

a b
25

20

15

10

5

-350 -300

Pr
ed

ic
te

d 
tra

ns
la

tio
n,

 R
PK

M

c

t-SNE component 1
0 25

-20

0

20

40

50

Predicted 
translation 

.

...

1.00

0.75

0.50

0.25

0
Endo. RD

MFE (kcal/mol)

25

dhigh translation low translation

HEK293T HeLa A549

Endo. RD Endo. RD

Relative fold change

20
15
10
5

t-S
N

E
co

m
po

ne
nt

 2

Ref.

*** *** *** *** *** ***

C
od

on
 u

sa
ge

-250 -200 -150

-40

-50 -25

0
0.5

0.7

w

1

CAI CPB ENC GC% MFE U%

Gluc

NGF

HA

INS

Fluc

VZV

GFP

−1

−0.5

0

0.5

1
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shown. Each dot represents one sequence, and the color represents the predicted
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frequency of the top 10 most frequent codons from 1000 high- or low-translated

sequences. “Endo.” denotes endogenous genes, with the dots representing the
codon usage frequency from endogenous sequences with top or bottom 10%
translation level (see “Methods”). Boxes denote interquartile (IQR) ranges, centers
mark medians and whiskers extend to 1.5 IQR from the quartiles. (for all the sta-
tistical test: p<2:2 × 10�16, two-sided t-test). d Changes of sequence features of
optimized sequences compared to the unoptimized, for differentmRNAs. For each
column (feature), a positive fold-change value indicates that the feature is more
abundant (or higher) in optimized sequences compared to unoptimized ones,
whereas a negative value signifies theopposite. Thedifferenceof ENC for INS shows
no significance (the cell in gray). GFP green fluorescent protein, Fluc firefly luci-
ferase, INS insulin, VZV varicella zoster virus glycoprotein E, and HA influenza A
hemagglutinin.
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(ENC), suggesting a selection against rare or inefficient codon pairs to
enhance translation39. Variations in CAI, Codon Pair Bias (CPB), GC
content (GC%), and MFE across different mRNAs suggested that while
these features could influence translation, their impact might bemore
mRNA- or context-dependent, due to complex sequence or structure
feature changes.

In short, these findings highlight RiboDecode’s ability to capture
complex sequence-translation relationships, offering a sophisticated
approach to mRNA optimization that goes beyond traditional codon
optimization metrics.

Experimental validation demonstrates Ribodecode’s versatility
and efficacy
While our in silico analyses demonstrated the potential of RiboDecode
to optimize codon sequences, we next sought to validate these find-
ings experimentally. We first validated RiboDecode’s ability to opti-
mize codon sequences for enhanced protein expression. For Gluc,
protein expression levels of the RiboDecode-optimized sequences
surpassed the reference and were more than twice as high as that of
the best-performing sequences designed by LinearDesign (p-value =
0.019, one-sided Mann–Whitney U test, Figs. 4a and S17a and
Table S3). The predicted translational levels showed a positive corre-
lation with the experimentally measured protein levels (Correlation
coefficient = 0.71, p-value = 0.077, Pearson’s correlation, Fig. S10).
However, the p-value is marginal, potentially due to the small number
of constructs tested. Further validation with larger datasets is needed.

In contrast, the CAI showed negative correlationwith the experimental
measurements (Correlation coefficient = −0.15), indicating that CAI is
not a reliable predictor of protein expression levels and ineffective
optimization strategy in this context. We noticed that the two
RiboDecode-designed mRNAs (RD1 and RD2) had the best perfor-
mance, which also had the highest MFE values of around −200. In
contrast, the LinearDesign sequences had MFE values of −350 and
−300. To rule out the increased protein production was associated
with higher MFE value, we tested additional LinearDesign sequences
with higher MFEs (−266.8 and −246.70 kcal/mol, respectively). Com-
pared to four LinearDesign sequences, RiboDecode-designed
sequences outperformed (Fig. S11).

We additionally optimized another commonly used reporter
gene, firefly luciferase (Fluc). Seven sequences, including four
RiboDecode-optimized (RD1-RD4), two LinearDesign-optimized (LD1,
LD2), and a WT, were transfected into HEK293T cells, and activity was
measured over 72 h (Fig. S12 and Table S6). All optimized sequences
significantly outperformed the WT. The LD1 (CAI of 0.766) and LD2
(CAI = 0.952) yielded the increased expression with about 7- and 41-
fold changes, respectively. RiboDecode sequences (CAI of ~0.71–0.73)
also achieved substantial improvementswith 6- to 16-fold over theWT.
The superior performance of the LD2 sequence with a high CAI value
here—contrasting with results for Gluc—underscores that the optimal
codon strategy is gene-specific. This highlights the need for context-
dependent approaches likeRiboDecode that capturecomplex features
beyond single metrics like CAI.
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Data 10). Data are presented as mean values +/− SD.
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We next evaluated RiboDecode’s ability to design for cellular
context by optimizing Gluc mRNA for preferential expression in
HEK293T cells over A549 and ARPE19 cells. The designed variants
successfully exhibited the intended higher expression in HEK293T
compared to both cell lines (Fig. 4b and Table S4). Predicted expres-
sion ratios favoring HEK293T closely matched experimental results in
the comparison against A549 (~1.7-fold predicted vs. ~1.55-fold
experimental). Preferential expression was also achieved against
ARPE19 (Fig. 4b and Table S5), although the experimental fold-change
(~2.8-fold) doubled the prediction (~1.4-fold). These results confirm
RiboDecode’s capability for context-aware design, while the dis-
crepancy in the ARPE19 comparison indicates potential for refining the
model tobetter capture quantitative differences acrossdiverse cellular
environments.

Modified mRNAs, such as those with 1-methylpseudouridine
(m1Ψ) modifications, and circular RNAs are used in mRNA therapy
instead of unmodified mRNAs due to their improved stability and
reduced immunogenicity3,7,40. We therefore assessed the effective-
ness of RiboDecode in enhancing translation in these alternative
mRNA forms. Among the four codon variants, m1Ψ-modified RD2 and
RD4 showed higher protein expression levels compared to the
reference, with up to a 4.6-fold higher expression at 48 h post-
transfection (Figs. 4c and S17b). Moreover, all four RiboDecode-
generated codon variants in the circular form outperformed
the reference (Figs. 4d and S17c). These results demonstrate tha-
t RiboDecode optimization enhances protein production in both

m1Ψ-modified and circular mRNAs, illustrating its reliability and
versatility.

These experimental validations demonstrate RiboDecode’s ability
to significantly enhance protein expression, optimize in specific cell
types, and improve translation across various mRNA forms, high-
lighting its potential as a powerful tool for mRNA therapeutic
development.

RiboDecode enhances immunogenicity of mRNA-based influ-
enza vaccines
Having established the robustness of our optimization approach, we
next aimed to demonstrate its practical application in the develop-
ment of mRNA-based vaccines. Influenza A viruses are responsible for
causing respiratory infections, leading to annual epidemics that result
in millions of human infections worldwide41. HA, a glycoprotein found
on the surface of influenza A viruses, plays a crucial role in the viral
infection process and is the primary target for the development of
influenza vaccines. Although most of the vaccines were developed
using inactivated influenza viruses,mRNA-based influenza vaccines are
currently actively developed42.

To enhance the expression of HA and potentially improve the
efficacy of HA-based vaccines, we optimized the HA coding sequence.
Three out of four RiboDecode-optimized HA sequences and two
LinearDesign-optimized sequences showed higher in vitro protein
expression compared to the WT (Fig. 5a and Table S7). Particularly,
RD3 showed approximately sixfold increase compared to the WT and
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Fig. 5 | More effective mRNA-based influenza vaccines through codon optimi-
zation. a Western blot analysis shows protein expression of the HA variants in
HEK293T cells 24 h after transfection. RD sequences were designed by RiboDecode
(w parameter were set to 0, 0, 0.7, and 0.5 for RD1-4). LD sequences were designed
by LinearDesign (λ parameter were set to 0 and 4 for LD1 and LD2). The expression
values were quantified using GelAnalyzer. Three times of the experiment was
repeated independently with similar results. b, c Protein expression RD3 in b the
linear mRNA form with m1Ψ modification and c the circular mRNA form. Three
times each experiment was repeated independently with similar results. d HA

mRNA immunization and analysis: BALB/c mice were intramuscularly inoculated
with two doses (10μg mRNA for each dose) with an interval of two weeks. The
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BioGDP.com81. e Levels of neutralizing antibodies against influenza viruses after
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figure. Biological replicates were repeated eight times. Data are presented asmean
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LinearDesign-optimized sequences. In addition, RD3 exhibited con-
siderably higher expression levels compared to the WT sequence in
bothm1Ψ-modified and circular mRNA forms (Fig. 5b, c). These results
again highlight the robustness and versatility of the RiboDecode-
optimized sequence.

We further assessed the in vivo immunogenicity induced by the
optimized sequence for both the prime and boost responses, where
split virus influenza vaccine (SV) was served as the positive control
(Fig. 5d, “Methods”). The RD3 sequence induced significantly stronger
neutralizing antibody responses, measured by the micro-
neutralization (MN) titers, compared to the WT sequence and SV.
For the prime response, RD3 elicited significantly higher MN titers
compared to WT, with approximately 4.4-fold increase (Fig. 5e, mean
MN titers: RD3 = 2560, WT= 580; p-value = 0.008, one-sidedWilcoxon
test). The difference was more pronounced for the boost response,
with RD3 inducing a 9.6-fold increase in MN titers compared to WT
(Fig. 5e, mean MN titers: RD3 = 83,200, WT= 8640; p-value = 0.002,
one-sided Wilcoxon test). These results demonstrated that the
RiboDecode-optimized sequence significantly enhanced both the
initial and boosted immune responses. This dramatic improvement in
immunogenicity underscores RiboDecode’s potential to enable more
effective vaccines with lower doses.

Enhanced protein expression and therapeutic efficacy with
optimized NGF mRNA
Having demonstrated the efficacy of RiboDecode in optimizingmRNA
for vaccine development, we next explored its potential in protein
replacement therapy.We focused onNGF as a promising candidate for
treating glaucoma, which is a leading cause of irreversible blindness43

and causes death of retinal ganglion cells (RGCs). Our recent study
demonstrated that mRNA-based NGF therapy provided robust neu-
roprotection for RGCs in an optic nerve crush (ONC) mouse model44.

To improve theneuroprotection efficacy,weoptimized the codon
sequences of human NGF mRNA. The protein expression levels of
threeRiboDecode-designed sequencesweremore than twofoldhigher
compared to that of the WT, whereas the LinearDesign sequences did
not show improvement (Figs. 6a and S18a and Table S8). We further
assessed the best-performing sequence (RD3) in both m1Ψ-modified
mRNA and circularmRNA forms. Notably, withm1Ψ-modification, RD3
achieved 8.4- and 9.8-fold higher protein levels compared to theWT at
24 h and 48 h, respectively (Figs. 6b and S18b).WithmRNA circulation,
RD3 also achieved amore than twofold higher expression than theWT
at both 24 h and 48 h (Figs. 6c and S18c). These results again demon-
strated the robustness of RiboDecode-optimized sequences across
different mRNA forms.

Based on its superior performance in initial in vitro tests, we
selected RD3 for further in vivo studies. To evaluate the in vivo
expression of optimized NGF mRNA, we intravitreally administered
both the RD3 and WT sequences. Each mRNA was m1Ψ-modified and
encapsulatedwithin LNP and administered at two doses: 100 ng/μl and
500 ng/μl. The RD3 sequence demonstrated significantly higher NGF
protein expression compared to the WT sequence at both doses.
Remarkably, RD3 at 100ng/μl achieved even slightly higher expression
than WT at 500 ng/μl (Fig. 6d).

We then investigated the therapeutic potential of optimized NGF
mRNA using an ONC mouse model, which mimics RGC injury and
resulted in significant RGC loss (Fig. 6e–g). Treatment with NGFmRNA
showed clear neuroprotective effects, preserving more RGCs after
injury. Notably, mice treated with 100 ng/μl RD3 showed significantly
higher RGCcounts than those treatedwith the samedoseofWTmRNA
(Fig. 6h, i, p-value = 0.0002, one-sidedWilcoxon test).Moreover, these
counts were comparable to those in mice treated with 500ng/μl
WT mRNA.

To sum, the optimized sequence exhibited superior protein
expression both in vitro and in vivo, while maintaining therapeutic

efficacy at one-fifth the dose of the unoptimized sequence. These
results demonstrated the effectiveness of RiboDecode in optimizing
NGF mRNA for the treatment of RGC injury.

Discussion
In this study, we present RiboDecode, a data-driven, deep learning-
based framework for mRNA codon optimization. The generative
optimization framework, guided by the deep learning prediction
model, enables the efficient exploration of the immense space of
possible codon sequences. This allows RiboDecode to discover pre-
viously unexplored, highly optimized sequences that may not be
accessible to traditional optimization methods. RiboDecode-
optimized sequences demonstrate superior performance in various
mRNA formats, including unmodified, m1Ψ-modified, and circular
mRNAs, highlighting its broad applicability in the rapidly evolving field
of mRNA therapeutics. In vitro and in vivo experiments using the
optimized sequences of therapeutically relevant proteins show sub-
stantial enhancements in protein expression compared to the unop-
timized sequences. These improvements further translate into
increased therapeutic efficacy, as demonstrated by significantly
enhanced immune responses to an optimized influenza vaccine and
markedly improved RGC protection in mice with optic nerve injury.

While mRNA abundance serves as both an input feature and
intrinsically linked to the Ribo-seq RPKM target variable, potentially
explaining its high predictive weight in ablation analysis, the model
demonstrated significant improvements in prediction accuracy by
integrating codon sequences and cellular context. Importantly, Ribo-
Decode’s in vitro and in vivo validation, where optimized sequences
substantially enhanced protein expression and therapeutic efficacy,
confirms its ability to optimize biologically meaningful translational
signals rather than merely reflecting transcript abundance. The
superior performance of RiboDecode may be attributed to several
factors. Firstly, RiboDecode’s deep learningmodel learns directly from
diverse nature sequences with translation measurements, enabling it
to capture complex patterns of codon sequences formRNAs with high
translation level. Second, themodel considered the cellular contexts of
mRNA translation. Third, RiboDecode’s generative optimization fra-
mework allows it to explore a large sequence space and to discover
distinct, highly optimized sequences that may not be accessible to the
traditional approaches.

These findings also align with the broader framework of gene
expression regulation: while mRNA abundance is a prerequisite for
protein synthesis (consistent with its predictive dominance), our
approach directly targets translational control, a critical layer high-
lighted by Schwanhäusser et al.45, by leveraging Ribo-seq-derived
codon usage and cellular context to maximize translational efficiency.
Although the model excludes post-translational events (as Ribo-seq
captures ribosome activity prior to protein maturation), the achieved
gains in protein output and in vivo efficacy robustly validate transla-
tional optimization as a key determinant of functional protein levels,
complementing established regulatory hierarchies.

The findings of our study have important implications for the field
of mRNA therapeutics. Firstly, RiboDecode can generate and evaluate
a vast number of diverse codon combinations. This capability allows
RiboDecode to optimize mRNA sequences beyond the limitations of
evolutionary constraints, potentially uncovering more efficient codon
usage patterns not found in natural transcripts. Second, by sub-
stantially increasing protein production, the optimized sequences can
improve the potency and reduce the required dose of mRNA-based
treatments, potentially mitigating side effects and enhancing patient
outcomes. This is particularly relevant for applications such as protein
replacement therapies, where achieving high levels of protein
expression is crucial for therapeutic success. Third, RiboDecode’s
robustness and versatility across different mRNA formats, including
modified and circular mRNAs, expand the range of therapeutic
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applications for which it can be employed. As the field of mRNA
therapeutics continues to evolve and new mRNA formats are devel-
oped to enhance stability, reduce immunogenicity, and improve
delivery40,46, RiboDecode’s ability to optimize sequences for these
diverse formats will be invaluable.

While our study demonstrates the significant potential of Ribo-
Decode in optimizing mRNA codon sequences for enhanced mRNA
translation and therapeutic efficacy, there are several future directions
to explore. Firstly, we focused exclusively on optimizing the codon
sequences while not explicitly modeling the 5′UTR. Recognizing the
critical role of the 5′UTR in regulating translation initiation, our future
work aims to expand RiboDecode to jointly optimize both UTRs and
the codon sequence. Second, our results indicate that while our pri-
mary goal was to enhance translation through codon optimization,
incorporating MFE optimization synergistically modulating mRNA
secondary structure stability and translation efficiency. However, we
observed the best w value appears context-dependent, suggesting a
one-size-fits-all approach may be suboptimal. Consequently, we
recommend that experimental designs include the testing of multiple
w values to identify the optimal balance for eachmRNA target. Further
research into the determinants of the optimalw valuewill be critical to
refine this strategy and could lead to more systematic approaches for
integrating MFE into mRNA design. Third, our MFE model cannot
predictMFEs for unseenmRNAs. For anunseenmRNA, themodelmust
first train the sequences withMFEs labelled by RNAfold. A generalMFE
model should be developed and used in future. Finally, the model was
trained exclusively on Ribo-seq data from endogenous, unmodified
mRNAs. Although our results showed significant expression enhance-
ments for optimized sequences in both m1Ψ-modified and circular
forms compared to their respective controls, the relative fold-
improvement compared to the unmodified format varied between
constructs. Future iterations could potentially incorporate data from
modified and circular transcripts to further refine optimization rules.

In conclusion, RiboDecode represents a paradigm shift from rule-
based to data-driven mRNA optimization, potentially uncovering pre-
viously inaccessible principles of efficient translation that were pre-
viously inaccessible. RiboDecode will provide a versatile tool for
researchers to maximize the potential of mRNA-based therapeutics,
paving the way for more effective treatments in various medical
applications.

Methods
Data collection and processing
Data preprocessing and filtering. We downloaded translation counts
of Ribo-seq datasets from the RPFdb database33,34,47. The following
steps were implemented for processing the Ribo-seq data in accor-
dance with RPFdb: First, to prevent adapter interference in down-
stream analyses, the 3′ adapter sequences weremanually extracted for
each dataset from the original publications or the corresponding
MultiQC48 outputs. Adapter sequences, if present at the ends of
sequencing reads, were subsequently removed using Cutadapt (ver-
sion 1.16)49. Next, to minimize rRNA and tRNA contamination,
sequences corresponding to rRNA and tRNA were retrieved for each
species from ENSEMBL50 and UCSC51 databases and removed post-
mapping using Bowtie252. Finally, to ensure the retention of high-
quality ribosome-protected footprints, which exhibit a characteristic
read-lengthdistribution reflecting the size of a translating ribosomeon
the RNA, only footprints within the 25–34 nucleotide length range
were retained after contaminant removal and alignment. The count
tables were transformed to reads per kilobase per million (RPKM).
Because some of the paired RNA-seq were not available in RPFdb, we
reprocessed the RNA-seq datasets. The raw FASTQ files of RNA-seq
were trimmed by sickle53 (v1.33) for adapter removal and quality con-
trol. Then, to filter out reads from tRNA or rRNA, wemapped the reads
to human tRNA and rRNA reference sequences (hg38) using bowtie254

(v2.3.5.1, -L 20). The unmapped reads were thenmapped to the human
genome (GRCh38, gencode.v28, https://www.gencodegenes.org/)
using STAR55 (v2.7.4a). Finally, read counts for each gene were sum-
marized by featureCounts56 (v2.0.1, -t exon). The expression counts of
Ribo-seq and RNA-seq were ln(RPKM×5+1) transformed. Genes with
low expression (median RPKM< 1) were filtered out. Finally, 11,725
coding genes from320 sampleswith 24 cell typeswere included in this
study (Supplementary Data 1).

Cross-validationdataset preparation. Out of 11,725 genes in the Ribo-
seq data, we randomly selected 1173 genes (1/10 of the total genes) that
were not included in the training datasets, as the “unseen genes”
dataset. Out of 320 Ribo-seq datasets, we randomly selected 120
datasets whose cell types were not included in the training datasets, as
the “unseen environments” dataset (Supplementary Data 1). The
“unseen genes and environments” dataset was also defined (Fig. S4).

mRNA isoform selection and sequence encoding. To address the
complexity of alternative splicing while managing computational fea-
sibility, we utilized the major isoform of each gene as a representative
for mRNA codon variants. This approach was necessitated by the
inherent limitations of NGS data in accurately quantifying the pro-
portions of individual isoforms. We defined the major isoform as the
transcript with the highest expression level, estimated using RSEM57

(v1.3.3). In total, our dataset contained 60,255 different mRNA
sequences.

Translation model architecture
Translation is influenced by multiple factors, including codon
sequences as the pivotal signals modulating translation58, trans-acting
elements modulating the cellular environment of translation59,60, and
mRNA abundance, which providesmore templates for translation61. To
capture these interacting variables, a translationmodel was developed
using a deep neural network architecture comprising 2 convolutional
layers and 5 fully connected (FC) layers62,63. The model inputs are a
codon sequence in one-hot encoding, a transcript abundance, and a
vector of gene expression profiles from RNA-seq, presenting cellular
environment (Fig. S1). The codon sequences were fixed to 4500 base
pairs (bp) starting from the translation start site, which covers over
98% of coding sequences, and those shorter than 4500bp were zero-
padded on 3′ end. To process these inputs, 3 sequential FC layers
extract features from the cellular environment vector, which are then
concatenated with the transcript abundance to form an attention
vector. In parallel, convolutional neural networks (CNNs) processes
the one-hot encoded codon sequence, generating embeddings with
four distinct feature sets. Subsequently, the averaged feature is
encoded through the other convolutional layers and flattened. Finally,
2 FC layers yield the predicted translation level output. To enhance
model robustness and prevent overfitting, batch normalization64 and
dropout65 techniques are employed after each layer, and max-
pooling66 is utilized following the convolutional layers. For optimiza-
tion, the AdamW optimizer67 is adopted in conjunction with the
SmoothL1Loss loss function and ReLU activation functions68. Addi-
tionally, gradient clipping and learning rate decay strategies are
implemented to mitigate gradient explosions and instability during
training. The model was parameterized by a total of 15 hyper-para-
meters, as detailed in Table S9. The model was pretrained for 20
epochs before being used by the codon optimizer of RiboDecode.
Model training and validation were assessed using the R-squared
metric (R2). The best-performing model was selected based on the
highest R2 value achieved on the validation set. The R2 metric, defined
as R2 = 1–(SSResidual/SSTotal), quantifies the goodness of fit by compar-
ing the sumof squared residuals (SSResidual) to the total sumof squares
(SSTotal). The PyTorch (v1.12.0) framework was leveraged for the
implementation of the deep model.
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The translation model’s architecture, which uses a fixed 4500 bp
input, results in a high nominal parameter count. This is an artifact of
flattening the zero-padded input sequences required for the majority
of genes, which have a median length of only 1200 nt. To mitigate the
resulting risk of overfitting, we implemented a strong dropout reg-
ularization strategy (rate of 0.9) before the final layers. This high
dropout rate forces the model to learn robust features rather than
fitting to noise in the padded regions. A comparative study (Fig. S15)
confirms this strategy is essential: models with no or low dropout
overfit immediately, whereas the 0.9 dropout rate eliminates over-
fitting and ensures stable, improving performance on all
validation sets.

MFE model architecture
The MFE prediction model was formed by a deep neural network
architecture comprising 2 convolutional layers, 9 residual blocks
derived from ResNet69, and 3 FC layers (Fig. S2a). The model input is
the one-hot encoded codon sequence, which is the same as the
codon sequence used in the translation model. Each residual block
consists of 2 convolutional layers with a residual connection. Initially,
shallow features are extracted through 2 convolutional layers, fol-
lowed by 5 residual blocks with max-pooling for deep feature
extraction. Subsequently, 4 residual blocks without max-pooling are
used to maintain spatial resolution. After the final residual block,
features are flattened and fed into 3 FC layers to predict the MFE
value. Batch normalization64 is applied after the first 2 convolutional
layers, and dropout65 is introduced after the subsequent 2 residual
blocks. The Fast Gradient Method (FGM)70 is integrated during
training to enhance generalization by applying perturbations to
input sequences. We utilized the AdamW optimizer67, SmoothL1Loss
function, and LeakyReLU activations71. The final loss is defined as
Loss = Lossmfe + Lossfgm, where Lossmfe is the SmoothL1Loss between
predictions and RNAfold35 MFE values, and Lossfgm is the Smooth-
L1Loss with added perturbations. The model is trained alongside
optimization by the codon optimizer of RiboDecode using generated
sequences as the training data, with performance evaluated using the
R2 metric. Details of 15 hyperparameters are provided in Table S10.
The PyTorch 1.12.0 framework and RNAfold (v2.4.18) were used
through Python interfaces (v3.8.19). We evaluated the MFE values of
mRNAs between our model and RNAfold. We found that our MFE
value highly agreed with the one from RNAfold (Fig. S13a), showing
the reliability of our MFE model. To determine the optimal training
set size, we compared our model trained on a compact set of
210,000 sequences against a model trained on an extended dataset
of 11.5 million sequences (achieving a data-to-parameter ratio > 1).
Both models achieved comparable optimization performance and
yielded MFE predictions highly correlated with values from RNAfold
(Fig. S13). Given the similar performance, we selected the 210K
training set for our framework, as it reduces computational time by
approximately 75% without sacrificing model reliability or accuracy.

We evaluated our MFE optimization framework against existing
MFE optimization methods, including the general-purpose, differ-
entiable model (JAX-RNAfold)72. Our analysis revealed that the high
computational complexity of JAX-RNAfold (v2.0.0-beta) severely limits
its use to short sequences (under 600 nt on our V100 GPU with 32 GB
video RAM), making it unsuitable for our primary goal of optimizing
full-length human mRNAs. To perform a direct, head-to-head com-
parison, we used a compatible sequence (Gaussia luciferase, 558 nt).
Our model achieved a lower (more favorable) MFE, completing the
optimization faster and with substantially less GPU memory than JAX-
RNAfold (Table S12). While LinearDesign is another powerful tool, it is
not a differentiable model and is thus incompatible with our gradient-
basedoptimization framework. Given the critical need for scalability to
therapeutically relevant sequence lengths and the efficiency observed

in direct comparison, we proceeded with our sequence-specific MFE
optimization approach.

Codon optimizer architecture
Fitness score. The fitness score combines mRNA translation level and
MFE predicted by above models.

For translation level, the prediction of a mRNA sequence is con-
ducted using the pre-trained translation model with the cellular
environment and transcript abundance holding constant during the
optimization. The loss function is designed as follows:

Lt =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � StÞ2

q
=α ð1Þ

Here, St is the predicted translation level, r represents the desired
output value of the translation model, and α is a constant based on St.

For MFE, the loss function is formulated based on model para-
meters of the current epoch since the MFE model is trained alongside
the optimization:

Lm = � β=Sm ð2Þ
where Sm is the predicted value of the current epoch and β is a

constant set based on it.
The introduction of α and β is intended to balance the loss in the

translation optimization and MFE optimization processes. The output
range of the translation model (St) typically lies between 0 and ~100
(e.g., 0 to 25 for Gluc), while RNAfold-derived MFE values generally
range between −100 and −1000 (e.g., −350 to −150 forGluc). To ensure
comparable magnitudes and numerical stability during optimization,
we introduced scaling factors α and β to normalize both loss compo-
nents. For most codon sequences exhibiting translation prediction
values < 100 and MFE values > −1000 kcal/mol, α = β = 100 provide
appropriate normalization (Table S11). However, we recommend
parameter adjustments under extreme value conditions: α should be
increased to 1000 when translation predictions exceed 100, while β
should be elevated to 1000 when MFE values fall below
−1000 kcal/mol.

The final optimized loss function is defined as follows:

Loss= Lm �w+ Lt � 1�wð Þ ð3Þ
Wherew is a constant ranging from0 to 1.Whenw is set to 0, only

the translation of mRNA is optimized. Whenw set to 1, only theMFE of
mRNA is optimized. When w set to a constant value between 0 and 1,
both models are optimized simultaneously, with the magnitude indi-
cating the relative emphasis on optimizing each model.

Optimization process of the codon optimizer. The codon optimizer
uses a gradient ascent optimization approach based on activation
maximization (AM)30 to generate synonymous codon sequences with
optimized fitness score. The optimization process involves the fol-
lowing steps:
1. Initial representation: the codon distribution is initially repre-

sented in aone-hotmanner, whereeachposition is assigned to the
specific codon of the original codon sequence.

2. Optimization: the optimized codon distribution by AM becomes
probabilistic, assigning a likelihood to each possible synonymous
codon at every position, with the goal of maximizing the
fitness score.

3. Regularization: during the optimization, a synonymous codon
regularizer is used to ensure that the optimization process only
adjusts the selection probabilities within the synonymous codons
capable of encoding the same amino acids as in the original
sequence. The regularizer applies a constraint on the codon
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distribution, T, given by a synonymous substitution mask matrix
W:

W =

w11 � � � wi1

..

. . .
. ..

.

w1j � � � wij

2
664

3
775 ð4Þ

wherewij signifies the selection of the jth coding category at the
ith position, with value 1 for a synonymous codon, and 0
otherwise. Here, i = 1, 2, … and j = 1, 2, ….

Subsequently, regularization is performed on T:

T =
T�WPL

i= 1ðT�W Þi
ð5Þ

Themaximum index values are then converted to a one-hot
representation to obtain Tone-hot:

Tone�hotij
=

1, if j =argmax Ti

� �
0, otherwise

�
ð6Þ

4. Sequence generation: after the gradient updates, a new codon
sequence is generated by selecting codons with the highest
probabilities.

5. Iteration: This sequence then re-enters the codon optimizer for
further rounds of optimization.

We employed the Adam optimizer and utilized a learning rate
decay strategy at different training stages. The optimization process
was regularized with a weight decay of 1 × 10−4. The learning rate was
initialized at 5 × 10−4 and decayed by a factor of 10 when the generated
data reached 1/2, 3/4, 7/8, and 16/17 of the total 40,000 sequences for
one epoch. The optimization process was conducted over 20 epochs.
However, we observed that all genes converged to maximum transla-
tion levels before the 7th epoch. Consequently, a total of
280,000 sequences were utilized to plot the progression of the
generation.

Integrative training of MFE model. To train the MFE model, we
adopted an active learning strategy that integratesmodel trainingwith
sequence optimization by the codon optimizer. This approach uses
the RNAfold tool31 for labeling and involves simultaneous training,
optimization, and sequence generation. The process consists of four
interconnected steps that run concurrently with the sequence
optimization:

Initial sampling: we begin by generating 20,000 sequences
through random synonymous substitutions (up to 10% of codons) of
the original sequence.

Initial training: these 20,000 sequences are input into both the
MFEmodel for predictions andRNAfold for ground truthMFE labeling.

Sequence generation: utilizing the trained model of current
epoch, new sequences are generated by the codon optimizer of
RiboDecode. This pool is sorted by predicted MFE, with lower values
being better. The top 480 sequences are selected as generated
sequences. The top sequence undergoes two operations: random
replacement (up to 10% of codons) and distributed replacement
according to its generating codon distribution. A total of
10,000 sequences are generated through this process.

Model retraining: The generated sequences, along with those
from distributed and random replacements, are used as input for MFE
prediction and RNAfold labeling. The model is then retrained on this
new data.

Model running time. The computational infrastructure employed for
our model training and sequence optimization comprised a single
NVIDIA Tesla V100 SXM2GPUwith 32 GB ofmemory and an Intel Xeon
Gold 5218 CPU operating at 2.30GHz.

Training the translationmodel required approximately 24 h. The
training time for the MFE model varied depending on the input
sequence length. For example, for the Gluc, NGF, and HA mRNA
codon sequences, the MFE model training took 1.08, 1.5, and 3.13 h,
respectively. After the MFE model training was completed, the
optimization phase was carried out, which required about 1 h for any
sequence.

Optimized codon sequences screening strategy for experimental
validation. To select optimal codon sequences for experimental vali-
dation, we employed a multi-step screening process for each gene:
1. Sequence Generation: We generated three rounds of candidate

sequences using different optimization strategies: (a) Translation-
only optimization (w = 0), (b) Joint optimization with moderate
MFE consideration (w =0.5), (c) Joint optimization with stronger
MFE consideration (w =0.7).

2. Initial Filtering: For each round, we filtered out potentially over-
optimized sequences by retaining only those variants with a
predicted translation level below the 90th percentile of all
generated variants. This step helps avoid unreliable over-
optimization that might not translate to real-world performance.

3. Selection Criteria: From the filtered sequences in each round, we
selected candidate sequences based on two criteria: (a) High
predicted translation level, (b) Low MFE value.

4. Final Selection: We recommend selecting one ormore candidates
from each of the three optimization rounds (w = 0, w =0.5,
w = 0.7) for experimental validation. This ensures a diverse set of
optimized sequences, balancing pure translation optimization
with different levels of MFE consideration.

Model evaluation and analysis
The following software and packages were used for statistical analysis
and figure generation: R (version 4.1.0) with the packages sva
(v3.40.0), ggplot2 (v3.4.2), viridis (v0.6.4), ggpointdensity (v0.1.0),
and data.table (v1.14.4).

Translation model evaluation. To evaluate the importance of each
input component, we independently trained multiple translation
models on the cellular environment vector, transcript abundance, and
codon sequence and their combinations20. During training, the
hyperparameter settings and dataset partitioning were consistent for
eachmodel. We replaced the input to be ablated with a zero tensor of
the same shape and independently observed the impact of each input
component on the final translation prediction.

When evaluating the performance of the model with CAI, MFE,
and cellular information as additional inputs, these new features were
concatenated into the attention vector of cellular environment fea-
tures and transcript abundance for mRNA translation prediction.

Furthermore, potential associations between genes in the unseen
dataset and those in the seen dataset may lead to overestimation of
model performance. To evaluate this potential issue, we obtained gene
family annotations from the HUGO Gene Nomenclature Committee
(https://www.genenames.org/) and excluded genes in the unseen
dataset that belonged to the same gene families as those in the seen
dataset (resulting in the removal of 130 genes). The results demon-
strated only amarginal decrease in prediction accuracyon the “unseen
gene test set” (with R² decreasing from0.81329 to 0.81295). Therefore,
although some of the genes in the unseen dataset are related to those
in the seen dataset, the performance of the model was not
overestimated.
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Nucleotide position contribution for translation prediction. To
evaluate the importanceof eachnucleotide atdifferent positions in the
codon sequence, we explored the attribution of translation model
predictions to their input features. Here, we implemented the attri-
bution method of Integrated Gradients73, obtaining an importance
score for each nucleotide position. This method combines the imple-
mentation invariance of gradients with the sensitivity of techniques
such as LRP74 or DeepLift75. Firstly, we determined a vector with all
features set to zero as thebaseline value. Then,we linearly interpolated
the input features from the baseline value to the actual input values,
with these intermediate values representing different strengths or
combinations of features. Subsequently, for each interpolated input,
we calculated the gradient of the model output relative to that input
and multiplied the gradient at each interpolation point with the dif-
ference between the input feature value and the baseline value,
obtaining the contribution of that feature at each interpolation point.
Finally, we weighted and summed the contribution values at all inter-
polation points to obtain the Integrated Gradient for that feature. For
the final analytical outcomes and visualization, the importance score
assigned to each nucleotide position was calculated as the mean of
absolute values derived from non-padding regions.

Cellular environment and mRNA abundance for translation model.
The default mRNA abundance level was set to 4.5 (ln-transformed
RPKM× 5 + 1, median transcript abundance; Fig. S14). To evaluate
robustness, we additionally tested input values of 3.82 and 5.19, cor-
responding to half and double the original RPKM expression level,
respectively. Notably, Gluc codon sequence predictions remained
highly consistent across these input variations, demonstrating the
stability of our model.

optimizing mRNA sequences using RiboDecode, we recommend
using the RNA expression profile of the target or the most similar
tissue or cell type through either experimental sequencing or publicly
available datasets. To facilitate implementation, we have incorporated
a user-defined environment input parameter into the software pack-
age, accompanied by comprehensive documentation and step-by-step
instructions.

For example, to predict translation in HEK293T, the input of cel-
lular environment was constructed as follows. First, the mRNA
expression levels of genes representing environmental factors were
obtained from RNA-seq data of untreated HEK293T cells. Then, the
batch effect arising from different data sources was corrected with R
package sva (v3.40.0) ComBat76. Finally, the mean value of the mRNA
expression was taken as the cellular environment input.

Codon usage analysis. Codon sequence variants with enhanced and
reduced predicted translation levels were generated in different cel-
lular contexts, including HEK293T, HeLa, and A549. Codon sequences
of endogenous genes with high (top 10%) and low (bottom 10%)
translation level were selected from Ribo-seq data. We further eval-
uated the impact of varying expression thresholds (top/bottom 5, 10,
and 20%, Figs. S8 and S16), with consistent results observed across all
cutoff values, except Gluc in A549 cells at the 5% threshold. Then, the
codon usage of generated and endogenous sequences was calculated
by the proportion of each codon among synonym codons. To get the
codons that appeared more in high-translated sequences, we per-
formed t-test (p-value < 0.05, after FDR adjustment for multiple-test-
ing) on high and low-translated sequences for both endogenous and
generated sets. Codonswith the significant andgreatest differences on
codon usage in endogenous sequences were chosen as the top-10
codons.

Sequence feature analysis. To analyze the sequence features of
RiboDecode-optimized sequences compared to non-optimized
sequences, we followed these steps:

1. Sequence Generation: (a) We randomly selected 2000
RiboDecode-optimized codon sequences. (b)We generated 2000
non-optimized sequences by performing random synonymous
codon substitutions on the unoptimized input sequence.

2. Feature Calculation: We calculated several sequence features for
both sets of sequences, including CAI, CPB, ENC, GC content (GC
%), MFE, and Uracil content (U%).

3. Fold Change Calculation: For each feature, we calculated the fold
change by dividing the median value of the optimized sequences
by the median value of the non-optimized sequences.

4. Data Transformation: We ln-transformed the fold change values
for each feature to normalize the distribution.

5. Data Scaling: The ln-transformed fold change values were scaled
to a range of −1 to 1 for visualization purposes.

6. Visualization: The scaled values were used to create a heatmap
representation of the feature changes (Fig. 3d). For detailed dis-
tributions of each feature, refer to Fig. S9.

All statistical analyze were performed through R (v4.1.0). R
package ggplot2 (v3.4.2) were used to make graphs.

Parameters used for sequence optimization. For Gluc, HA, and NGF
sequence optimization, four sequences were designed by RiboDecode
(RD1, RD2, RD3, and RD4:w = 0, 0, 0.7, and 0.5, respectively), and two
sequences were designed by LinearDesign (LD1 and LD2: λ = 0 and 4).
The WT sequence was also used as a reference.

To preliminarily evaluate mRNA optimization in vitro, we first
performed codon optimization for HA and NGF for the HEK293T cel-
lular environment and measured their protein expression in
HEK293T cells (Figs. 5a–c and 6a–c).

Comparative analysis of sequence space across design methods.
We generated 1000 full-length Gluc codon sequences using Ribotree
(v1.1.8), LinearDesign (v1.0.0), CDSfold38 (https://github.com/gterai/
CDSfold), and RiboDecode, respectively. High-dimensional sequence
embeddings were extracted using CodonBERT (https://github.com/
Sanofi-Public/CodonBERT)24, followed by t-SNE dimensionality reduc-
tion for visualization.

mRNA preparation
Plasmid construction. The 5′homology sequence, IRES sequence, 3′
homology sequence, E1/E2 sequence and protein coding sequence,
were chemically synthesized, and cloned into the vector pUC57, which
contains a T7 RNA polymerase promoter.

For linear mRNA, the plasmids contain the 5′UTR, protein coding
region, 3′UTR and 105 nt poly-A elements. A 3 × flag tag was added
after the coding region, in order to detect the protein expression by
Western blot. The UTR and coding sequences were listed in Supple-
mentary Data 2.

Linear mRNA production and modification. The linear mRNAs were
produced using the HiScribe T7 High Yield RNA Synthesis Kit and cap-
ped with m7G(5′)ppp(5′)G RNA Cap Structure Analog (NEB, #S1404).
Then, the RNAwas column-purified. Primers formRNA amplification are
listed in Supplementary Data 2.

For mRNA m1Ψ-modification, N1-Me-Pseudo UTP (Yeasen Bio-
technology, #10651ES) was used to replace the unmodified UTP.

Circular mRNA production and purification. The in vitro transcrip-
tion (IVT) of circular mRNA was carried out from linearized circular
mRNA plasmid templates with the HiScribe T7 High Yield RNA Synth-
esis Kit (New England Biolabs, E2040S) following the kit manual. After
IVT, circular mRNA was purified using the Monarch RNA Cleanup Kit
(New England Biolabs, #T2050L). Then, the RNA precursors were
heated to 70 °C for 3min and immediately placed on ice for 2min. GTP
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was added to a final concentration of 2mMwith a buffer (50mM Tris-
HCl, 10mMMgCl2, 1mMDTT, pH 7.5) for 8min at 55 °C to catalyze the
cyclization. Then RNA was column-purified.

For circular mRNA purification, we collected RNA fractions
through UV absorbance at 260nm on an Agilent 1260 Series HPLC
(Agilent) system with a 4.6 × 300mm column (Sepax Technologies,
#215980P-4630) at a flow rate of 0.3mL/min. The fractions were
concentrated with a 4ml Ultracel-10 regenerated cellulose membrane
(Millipore, #UFC8010) and purified by columnchromatography. Then,
the RNA was treated with RNase R (Beyotime, R7092L) for further
enrichment. Finally, RNase R-digested RNA was column-purified.

In vitro experiments
TheHEK293T (#CRL-1573), A549 (#CCL-185), andARPE-19 (#CRL-2302)
cell lines from the American Type Culture Collection were used in
this study.

mRNA transfection. HEK293T cells were cultured in Dulbecco’s
Modified Eagle’s Medium (BasalMedia, #L110KJ) containing 10% fetal
bovine serum (NATOCOR, #SFBE) and 1% penicillin-streptomycin
(GIBCO, #15140122) at the condition of 37 °C and 5% CO2.mRNAs were
transfected into HEK293T cells using Lipofectamine MessengerMax
(Invitrogen, #LMRNA015) according to the manufacturer’s instruc-
tions. At the appropriate time after transfection, the cell lysate or
supernatant was collected for protein detection.

In vitro protein expression measurements. For measurement of
Gaussia luciferase activities, HEK293T cells were seeded in 96-well
plate and transfected with 150ng mRNA per well. The cells were lysed
at 6, 24, 48, and 72 h after transfection using 1× cell lysis buffer from
Dual Luciferase Reporter Assay Kit (Vazyme Biotech, DL101-01). Then,
the luminescence signal was detected following the provided
instructions.

For in vitroquantitativemeasurement ofNGF,HEK293T cells were
seeded in 24-well plate and 500ng of RNA was transfected into the
cells per well. The cell culture supernatants were collected 6, 24, 48,
and 72 h after transfection. Then, the protein expression level was
detected using Enzyme-linked Immunosorbent Assay Kit (Cloud-Clone
Corp, #SEA105Mu), following the provided instructions.

For measurement of HA protein level, HEK293T cells were seeded
in 12-well plate and transfected with 1.25μg mRNA per well. After 24 h,
cells were harvested and collected in 300μL RIPA lysis buffer
(HANGZHOU DUDE BIOLOGICAL CO.LTD, #FD009) that contained 1%
PMSF (HANGZHOU DUDE BIOLOGICAL CO.LTD, #FD0100). Then,
protein level was analyzed with western blot using anti-flag primary
antibody (Sigma-Aldrich, #F1804, 1:1000).

Each experiment was repeated three or four times from distinct
samples.

Cell type specificity experiments. We used RiboDecode to design
three Gluc mRNA variants optimized for preferential expression in
HEK293T cells. The optimization process considered the cellular
context of HEK293T cells while maintaining or reducing expression
levels inA549 andARPE19 cells. Gluc protein expressionwasmeasured
24 h post-transfection. Each experiment was performed in quad-
ruplicate. Expression levels were normalized to the reference
(MF882921.1) Gluc mRNA for each cell type.

In vivo experiments
Mouse retina histology and microscopy. For retinal whole-mounts
immunofluorescence, eyes were surgically removed from perfused
mice and fixed with 4% PFA at room temperature for 1 h. Retinas were
detached and whole mount staining was performed. The retinas were
blocked for 1 h in PBS staining buffer containing 5% normal donkey
serum (Solarbio, SL050) and 0.1% Triton ×-100 (Sigma, ×100-100). The

retinas were incubated with the primary antibody (Novus, #NBP2-
20112, 1:500) overnight at 4 °C and washed 3 times with PBS for 5min
each before incubation with the secondary antibody (CST, #4413S,
1:1000) for 2 h at room temperature. The retinas were washed again
with PBS 3 times for 5min each and then mounted.

Confocal images were obtained using a Zeiss LSM 980 micro-
scope. To count retinal ganglion cells (RGCs), we analyzed
320 × 320μm samples from the peripheral retina. These samples were
taken ~500μm from the center to the edge in all four quadrants of the
retina. We then processed the data using ImageJ and ZEN software.

mRNA intravitreal injection. Adult mice were anesthetized by intra-
peritoneal injection of 1% sodium pentobarbital solution (25mg/kg).
Subsequently, a minor incision was made in the eyelid using a 30-
gauge needle to facilitate eye exposure. For intravitreal injections, a
micropipette was carefully inserted through the serosal opening, and
formulations such as LNP-mRNA or other substances were adminis-
tered into the vitreous body of the eye. To prevent the backflow of the
injected solution, the needle was maintained in position for approxi-
mately 10 s after the injection before being gently withdrawn. To
protect the cornea post-procedure, tobramycin was applied.

In vivo NGF protein expression. Them1Ψ-modified NGFmRNAs were
injected intomouse retina and protein level weremeasured after 48 h.
The detachment and processing of the mouse retina were performed
in the same way as mentioned in the section above. Then, the retinas
were collected in 300μL RIPA lysis buffer (Beyotime, P0013B) that
contained 1% PMSF (Sigma, 10837091001). Protein level was analyzed
with western blot using anti-NGF Antibody- BSA and Azide-free
(Abcam, #ab6199, 1:1000).

Optic nerve crush mouse model. Mice were anesthetized by intra-
peritoneal injection of 1% sodium pentobarbital solution (25mg/kg).
Then, the eye surface was dilated with tropicamide drops and surface
anesthesia was provided with proparacaine hydrochloride. The mice
were fixed on the animal operating table. The optic nerve was com-
pletely exposed by cutting open the bulbar fascia under the surgical
microscope and using microforceps to separate the surrounding tis-
sues and hold the optic nerve for 5 s with a 0.07 mm wide reverse
forceps at 1mm posterior to the globe in the vertical direction of the
longitudinal axis of the optic nerve. Tobramycin was applied daily to
the superior orbital rim incision for 3 days postoperatively. Five to nine
biological replicates were performed for each experiment.

In vivo immunogenicity. First, m1Ψ-modified mRNA with WT and RD1
codon sequences were encapsulated within lipid nanoparticles (LNP).
BALB/c mice were received two intramuscular doses of 10 μg mRNA
each, with the dose determined by previous studies77,78, administered
on day 0 (prime) and day 14 (boost). (Fig. 5d). We collected mouse
serum and performed micro-neutralization (MN) assays to quantify
neutralizing antibodies at two time points: day 14 (for prime response)
and day 28 (for boost response) (Fig. 5e, “Methods”). PBS buffer and
the inactivated Split-virus (A/Victoria/2570/2019 (H1N1)) Influenza
Vaccine was used as negative and positive control, respectively.

Micro-neutralization (MN) assay. To measure the titer of anti-
influenza virus neutralizing antibodies, we treated mouse serum with
receptor-destroying enzyme II (RDE II) (Denka-Seiken) at 37 °C for 16 h,
followed by heat-inactivation at 56 °C for 30min. The experimental
procedure of MN was the same as previously reported79. In brief,
mouse serum samples were incubated with receptor-destroying
enzyme (RRE, Denka Seiken) at 37 °C for 16 h, followed by heat inac-
tivation at 56 °C for 30min. Subsequently, 50μl of the treated serum
was subjected to twofold serial dilution, mixed with an equivalent
volume of virus solution containing 100 TCID₅₀ (50% tissue culture

Article https://doi.org/10.1038/s41467-025-64894-x

Nature Communications |         (2025) 16:9957 14

www.nature.com/naturecommunications


infectious dose), and then transferred to 96-well plates. Following a 1-h
incubation at 37 °C, 100μl of Madin–Darby canine kidney (MDCK) cell
suspension at a density of 3 × 10⁵ cells/ml was added to each well. The
plates were further incubated for 18 h at 37 °C under 5% CO₂, after
which the cells were washed with phosphate-buffered saline (PBS) and
fixed with cold 80% acetone for 10min. Viral nucleoprotein (NP) was
detected using an enzyme-linked immunosorbent assay (ELISA) with a
monoclonal antibody specific to influenza A virus NP (Abcam). MN
titration was defined as the reciprocal of the maximum serum dilution
that neutralizes the 50% influenza H1N1/PR8 virus infections in MDCK
cells. The minimum MN titer was set to 10. Eight biological replicates
were performed for each experiment.

Ethics statement. For the in vivo assay of NGFmRNA, 8-week-oldmale
C57BL/6JGpt mice (RRID: N/A) were purchased from GemPharmatech.
All experimental procedures involving these mice were conducted in
strict accordance with the animal protocols that received approval
from the Institutional Animal Care and Use Committee at the Zhong-
shan Ophthalmic Center, Sun Yat-Sen University, under the animal
ethics approval number Z2021067.

For the in vivo assay of HA mRNA, 6–8-week-old male BALB/
cAnNCrl mice were supplied by the Laboratory Animal Center of Sun
Yat-Sen University. All experimental procedures were conducted in
strict accordance with the animal protocols that received approval
from the Animal Care and Use Committee Institutional at the Sun Yat-
SenUniversity, under the animal ethics approval number 2022002794.

All mice were group-housed (5 mice per cage) in specific
pathogen-free facilities with a 12-h light/12-h dark cycle, an ambient
temperature of 20–26 °C, and a relative humidity of 40–60%. Standard
laboratory rodent chow and autoclaved water were provided ad
libitum.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw RNA-seq and Ribo-seq data analyzed in this study were
sourced from the RPFdb database (https://sysbio.gzzoc.com/rpfdb/).
The relevant sample accession codes and gene lists are provided in
Supplementary Data 1. The processed datasets generated for the
translation model—including gene expression counts, mRNA
sequences, transcript isoform information, associated sample
metadata, filtered genes, and training/test group—are publicly avail-
able on Figshare (https://doi.org/10.6084/m9.figshare.28916288.v3).
The specific mRNA sequences utilized in the experimental valida-
tions are included in Supplementary Data 2. All source data under-
lying the figures and statistical analyses are available within the
Supplementary Data (specifically, Supplementary Data 3–10).

Code availability
The complete translation model and optimization framework of
RiboDecode are available on GitHub (https://github.com/wangfanfff/
RiboDecode). The repository has been archived on Zenodo (https://
doi.org/10.5281/zenodo.17096436, version v1.0.0)80 and Figshare
(https://doi.org/10.6084/m9.figshare.28916288.v3).
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