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Abstract

DNA variants represent an important source of genetic variations among individuals. Next- generation sequencing (NGS) is
the most popular technology for genome-wide variant calling. Third-generation sequencing (TGS) has also recently been
used in genetic studies. Although many variant callers are available, no single caller can call both types of variants on NGS
or TGS data with high sensitivity and specificity. In this study, we systematically evaluated 11 variant callers on 12 NGS and
TGS datasets. For germline variant calling, we tested DNAseq and DNAscope modes from Sentieon, HaplotypeCaller mode
from GATK and WGS mode from DeepVariant. All the four callers had comparable performance on NGS data and 30×
coverage of WGS data was recommended. For germline variant calling on TGS data, we tested DNAseq mode from Sentieon,
HaplotypeCaller mode from GATK and PACBIO mode from DeepVariant. All the three callers had similar performance in SNP
calling, while DeepVariant outperformed the others in InDel calling. TGS detected more variants than NGS, particularly in
complex and repetitive regions. For somatic variant calling on NGS, we tested TNscope and TNseq modes from Sentieon,
MuTect2 mode from GATK, NeuSomatic, VarScan2, and Strelka2. TNscope and Mutect2 outperformed the other callers. A
higher proportion of tumor sample purity (from 10 to 20%) significantly increased the recall value of calling. Finally,
computational costs of the callers were compared and Sentieon required the least computational cost. These results suggest
that careful selection of a tool and parameters is needed for accurate SNP or InDel calling under different scenarios.
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Introduction
DNA variants include single nucleotide variants (SNVs), small
insertions and deletions (InDels), and structural variations
(SVs), representing an important source of genetic variations
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among individuals [1]. Based on the cell type where vari-
ants occur, there are two types of variants, germline and
somatic variants, which occur in germ cells and somatic cells,
respectively [2].
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Next-generation sequencing (NGS) is by far the most popular
technology for genome-wide variant calling. Whole genome
or whole exome sequencing based on NGS is routinely used
to identify patient-specific germline variants in Mendelian
diseases and somatic variants in cancer [3–5]. To date, the NGS
technology has dominated by the Illumina-like NGS platforms,
that are accurate and high-throughput, with relatively low cost,
but the length of reads is less than 200 base-pair (bp). Many
germline and somatic variant callers have been developed for
Illumina-like NGS data due to their popularity (The following
NGS refers to Illumina-like NGS). For germline variant calling,
HaplotypeCaller in Genome Analysis Tool kit (GATK) is one of the
most commonly used callers, which aligns NGS reads against a
reference genome and calls SNVs and InDels simultaneously
via local de novo assembly of haplotypes [6, 7]. DeepVariant
is a recent and the first variant caller based on the deep
convolutional neural network that was originally designed to call
SNVs and InDels from NGS data [8]. Sentieon is a commercial
variant caller that is designed as an accelerated software for
GATK [9]. Sentieon has DNAseq mode that exactly matches
the haplotype mode of GATK without down-sampling and
DNAscope mode that has improved accuracy by machine learn-
ing models. For somatic variant calling, many callers have also
been developed, including MuTect2 in GATK, TNseq mode and
TNscope mode in Sentieon, NeuSomatic and Strelka2. MuTect2
is a somatic SNP and InDel caller that combines MuTect with
the assembly based machinery of HaplotypeCaller [10]. TNscope
combines haplotype-based variant calling for variant candidate
calling and machine learning for variant filtration to improve the
accuracy of variant calling. TNseq provides matching results to
MuTect2, but without down-sampling for improved accuracy and
consistency [11]. NeuSomatic is the first convolutional neural
network approach for somatic variant calling, which summa-
rizes sequence alignments into small matrices and incorporates
many features to capture variant signals [12]. Strelka2 is a variant
caller for the analysis of germline variants in small cohorts and
somatic variant in tumor/normal sample pairs, which uses a
Bayesian approach to represent continuous allele frequencies for
both tumor and normal samples, while leveraging the expected
genotype structure of the normal samples [13].

In addition to NGS, third-generation sequencing (TGS) tech-
nology has also been used in genetic studies in the last few
years [14]. Two major TGS platforms, including single-molecule
real-time (SMRT) technology from PacBio and Oxford Nanopore
Technology, are characterized by long read length (10–100 kb) but
with a high sequencing error rate (∼15%). TGS has significant
advantage in identifying SVs due to long read length compared
to NGS. The recently developed circular consensus sequencing
(CCS) mode from SMRT technology considerably improved the
accuracy of sequences. CCS generates high fidelity (HiFi) reads
to provide base-level resolution with less than 1% error rate for
the calling of variant types from SNVs and InDels to SVs [15].
Recent studies have shown that SNV calling from TGS reads
improved variant calling and provided independent validation to
NGS reads, particularly generated high-confidence variant calls
in repetitive regions of the genome, which is inaccessible to NGS
[15]. Compared with NGS, there are a few software designed
for SNP and InDel calling in TGS data. DeepVariant recently
introduced a machine learning model particularly designed to
call SNP and InDel for the CCS mode of SMRT long sequencing
reads [16].

With many variant callers available, several benchmarking
studies have been conducted. Hwang et al. [17] compared GATK,
Samtools and Freebayes on datasets generated from different

platforms using the same sample (HG001) and observed differ-
ent biases toward specific types of SNP genotyping errors by
different variant callers. Chen et al. [18] tested three variant
callers, GATK, Strelka2 and Samtools on datasets generated from
different platforms also using HG001. Bian et al. [19] tested five
open-source somatic variant callers on four synthetic datasets
and concluded that MuTect2 performed the best among the
five callers. Despite the existence of these benchmarking stud-
ies, the new deep learning-based caller, DeepVariant and the
most popular commercial variant caller, Sentieon, have not been
included in most of the benchmarking studies. In addition, pre-
vious benchmarking studies of SNP and InDel callers focused on
NGS data, but TGS data have been ignored.

In this study, we systematically evaluated four germline vari-
ant and six somatic variant callers on NGS datasets generated
from the Illumina HiSeq sequencer as well as three germline
variant callers on TGS datasets generated from the CCS mode
of the PacBio Sequel II sequencer. We compared their perfor-
mance using a number of evaluation metrics on 12 NGS and TGS
datasets. In addition, the computing usages were also compared.
Our systematic evaluation of variant callers will provide useful
recommendations for their use under different scenarios.

Material and methods
Data source

All the datasets used in this study are summarized in Table 1.
Germline variants were evaluated on NGS data (Illumina) and
TGS data (PacBio). The sample HG001 was a B lymphocyte cell
line from a woman of Utah’s CEPH lineage. HG002, HG003 and
HG004 were samples from a Jewish family, and HG005, HG006
and HG007 were samples from a China family [20]. For the
NGS datasets, HG001 used for germline variant analysis was
downloaded from European Nucleotide Archive (ENA; http://
www.ebi.ac.uk/ena), and it was sequenced to a depth of approx-
imately 50-fold coverage by the Illumina HiSeq 2000 sequencing
platform. HG001 used for mixture data was downloaded from
Genome in a Bottle (GIAB; ftp://ftp-trace.ncbi.nlm.nih.gov/gia
b/ftp/release/) and it was sequenced to a depth of 100-fold
coverage by the Illumina HiSeq 2500 sequencing platform. The
FASTQ data of HG002-HG007 were downloaded from GIAB, which
were all sequenced by the Illumina HiSeq 2500 sequencing. The
simulated sets of NGS data were generated from HG002 and
HG005 using an in-house script at coverages of 2×, 5×, 10×,
15×, 30× and 50× for germline variant calling. The TGS data of
HG001, HG002 and HG005 were generated by the CCS mode of
PacBio Sequel II platform, obtained from the GIAB (ftp://ftp-tra
ce.ncbi.nlm.nih.gov/giab/ftp/release/), which was aligned with
hs37d5 BAM files for subsequent evaluation [21]. The true set
(variant call format [VCF]) file of each sample was downloaded
from GIAB. The link to HG001 is ftp://ftp-trace.ncbi.nlm.nih.go
v/giab/ftp/release/NA12878_HG001/latest/GRCh37/. The link to
HG002 is ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/Ashke
nazimTrio/HG002_NA24385_son/latest/GRCh37/. The link to the
other samples is ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/relea
se/.

As the true positive and negative variants are not possible
to be obtained in tumor samples, a recent study suggested that
in-silico mixtures worked nearly as well as in-vitro mixtures for
benchmarking [11]. We therefore mixed germline datasets from
the GIAB reference samples in-silico to create synthetic tumor
samples to simulate true-positive somatic variants comprised
of variants that were unique in one sample and absent from
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Table 1. Summary of datasets used in this study

Data set name Platform Sample source Note Coverage

NGS001 Illumina HiSeq2000 HG001a B lymphocytes cell line 50×
NGS002 Illumina HiSeq2500 HG002 Ashkenazim Trio son 30×
NGS003 Illumina HiSeq2500 HG003 Ashkenazim Trio father 30×
NGS004 Illumina HiSeq2500 HG004 Ashkenazim Trio mother 30×
NGS005 Illumina HiSeq2500 HG005 Chinese Trio son 30×
NGS006 Illumina HiSeq2500 HG006 Chinese Trio father 30×
NGS007 Illumina HiSeq2500 HG007 Chinese Trio mother 30×
TGS001 PacBio Sequel II (CCS) HG001 B lymphocytes cell line 30×
TGS002 PacBio Sequel II (CCS) HG002 Ashkenazim Trio son 32×
TGS005 PacBio Sequel II (CCS) HG005 Chinese Trio son 30×
MIX010 Illumina HiSeq2500 10% HG001b with 90% HG002 Mixed data 100×
MIX020 Illumina HiSeq2500 20% HG001b with 80% HG0002 Mixed data 100×
MIX040 Illumina HiSeq2500 40% HG001b with 60% HG002 Mixed data 100×
MIX060 Illumina HiSeq2500 60% HG001b with 40% HG0002 Mixed data 100×
aHG001 (used for germline variant analysis) was downloaded from ENA (http://www.ebi.ac.uk/ena), and it was sequenced to a depth of approximately 50-fold coverage
by the Illumina HiSeq 2000 sequencing platform.
bHG001 (used for mixture data) was downloaded from GIAB, and it was sequenced to a depth of 100-fold coverage by the Illumina HiSeq 2500 sequencing platform.

the other. The original data of two samples (HG001 and HG002)
were generated by GIAB, which were sequenced by Illumina
HiSeq 2500. The true set of in-silico tumor sample was the loci,
which existed in high-confidence variant call sets of HG001
but not existed in all variant call sets of HG002. The depth of
coverage in each in-silico tumor sample was 100× coverage. Four
tumor samples with 10, 20, 40 and 60% tumor purity were mixed
separately into HG002 to obtain in-silico mixture data of different
target depths for the subsequent analysis. For example, 10×
depth data from sample HG001 and 90× depth data from sample
HG002 were mixed together to produce the 10% tumor sample.
The same procedure was applied in other three tumor samples.

Data process

The FASTQ file was aligned with the human reference genome
(hs37d5) using the BWA-MEM algorithm [22]. The BAM file was
processed followed these steps: mark duplication, InDel realign-
ment and base quality score recalibration (BQSR). All steps were
performed according to standard instructions (see Supplemen-
tary Information).

Evaluation of variant callers

A total number of 11 callers used in the study (Table 2). For
germline variant calling on the NGS datasets, we used DNAseq
and DNAscope modes from Sentieon, HaplotypeCaller mode
from GATK and WGS mode from DeepVariant. For germline
variant calling on the TGS datasets, we used DNAseq mode
from Sentieon, HaplotypeCaller mode from GATK and PACBIO
mode from DeepVariant. To evaluate the influence of different
sequencing depths on variation calling, DNAseq was used at
different sequencing depths.

To detect somatic variants on the NGS datasets, we used
TNscope and TNseq modes from Sentieon, MuTect2 mode from
GATK, NeuSomatic, VarScan2 and Strelka2. The details of the
mode and software are listed in Table 2.

Evaluation of variant calling accuracy was performed using
RTG Tools (Real Time Genomics Tools) [23]. RTG Tools contain
utilities to manipulate and compare multiple VCF files, as well as
utilities for processing common NGS data formats. The SNP and
InDel were evaluated separately. In the evaluation process, QUAL

(quality) value was used to draw the precision-recall (PR) curve
for germline variant, while AF (allele frequency) was selected to
draw the PR curve for somatic variant.

We defined true positive (TP), true negative (TN), false posi-
tive (FP), false negative (FN) variants and F1 score as follows:

TP: variants called by a variant caller as the same genotype
as the positive variants.

FP: variants called by a variant caller but not in the positive
variants.

FN: positive variants that were not called by a variant caller.
Precision: TP/(TP + FP).
Recall: TP/(TP + FN).
F1 = 2∗(precision ∗ recall)/(precision + recall).
The vcfeval function in RTG Tools was used for evaluation.

The input file was the VCF file of truth set (base set) and call set.
The output files are used for ROC curve analysis.

Evaluation of SNPs and InDels in germline variant
calling

We used the vcfeval function of RTG Tools to evaluate and
compare the performance of different callers [23]. Hard filter
is a method recommended to filter the raw calls emitted by
the GATK callers and it has been shown to have an impact on
the GATK performance [7]. We conducted hard filter on HG001
and checked the effect before and after hard filter. We also
evaluated the effect of two parameters emit_conf and call_conf
of Sentieon DNAseq mode, which determined the threshold of
variant quality to emit or call a variant, respectively. The filter
parameters were shown in the Supplementary Information. To
evaluate the difference in accuracy and calling ability between
NGS and TGS, the genome was divided into the GIAB high_conf
region, the GIAB filtered region, and the outside GIAB region.
GIAB high_conf region was a region that includes a subset of
variant calls that are easier to detect defined by GIAB; the GIAB
filtered region was the variable region that was included in GIAB,
but was not included in the high-confidence region; and the
outside GIAB region was other genomic regions except for the
above two regions.

We also analyzed the influence of GC content and duplication
rate on the effect of variant calling using DNAseq from
DeepVariant. The difference in GC content between NGS and
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Table 2. Software and mode for evaluation

Short name Mode Software Version Mutation type Sequencing type

DNAseq_S DNAseq Sentieon 201808.05 Germline NGS and TGS
DNAscope_S DNAscope Sentieon 201808.05 Germline NGS
HC_GATK HaplotypeCaller GATK 4.0.7 Germline NGS and TGS
WGS_DV WGS DeepVariant 0.8 Germline NGS
PACBIO_DV PACBIO DeepVariant 0.8 Germline TGS
TNscope_S TNscope Sentieon 201808.05 Somatic NGS
TNseq_S TNseq Sentieon 201808.05 Somatic NGS
Mutect2_GATK Mutect2 GATK 4.0.7 Somatic NGS
NeuSomatic – NeuSomatic 0.2.0 Somatic NGS
VarScan2 – VarScan2 2.3.9 Somatic NGS
Strelka2 – Strelka2 2.8.4 Somatic NGS

TGS data in FP loci was calculated. Different GC content
region files were downloaded from https://doi.org/10.1038/
s41587-019-0054-x [24], and the number of variations in these
regions was calculated using Bedtools. Firstly, overlapping
regions in each BED file were merged, and then SNP and InDel
loci information was transformed into BED format (one line for
each locus). At last, intersect of Bedtools (v2.26.0) was used to
calculate the number of overlapping regions between these two
BED files. Meanwhile, the ratio of the number of variations in
TGS data to that in NGS data was calculated. The dup95, dup99
files were downloaded from UCSC, Dup95 means repetitive
regions in which the duplication rate was more than 95%; Dup99
means repetitive regions in which the duplication rate was more
than 99%; dup_all and dup_gt10k files were downloaded from
https://doi.org/10.1038/s41587-019-0054-x [24], of which Dup_all
means all repetitive regions; Dup_gt10k means repetitive regions
greater than 10 kb. The number of variations in these regions was
calculated using Bedtools in NGS and TGS data.

Results
Overview of workflow

To evaluate the accuracy of variant callers for germline variant
and somatic variant on NGS and TGS datasets, we designed and
implemented different test schemes (Figure 1). We first detected
variants and different procedures were used for the NGS and TGS
datasets. Next, the sensitivity and specificity of each software
were evaluated. In addition, the effects of different parameters
on the calling of variation results were evaluated. Finally, the
analysis results of the NGS and TGS data were compared.

Evaluation of germline variants from NGS data

DNAseq and DNAscope from Sentieon, HaplotypeCaller from
GATK and WGS from DeepVariant were compared for germline
variant calling on NGS data. All four callers showed high
accuracy in both SNPs and InDels calling on seven datasets
(Figure 2, see Supplementary Figure S1 and Supplementary
Table S1 available online at https://academic.oup.com/bib). F1
scores of SNP calling were all above 0.99, and that of InDel
calling were all above 0.98, which agreed with findings from
a previous study [12]. While NGS001 had 50× coverage and
the other six datasets had 30× coverage, the performance was
indistinguishable among the datasets. We further evaluated the
effects of different sequencing depths on variant calling. We
down-sampled datasets with coverages of 2×, 5×, 10×, 15× and
30× from the NGS002 and NGS005 datasets (see Supplementary

Figure S2 and Supplementary Table S2 available online at
https://academic.oup.com/bib). At low sequencing depth of less
than 15×, the precision did not change much, but the recall
value was low. When the sequencing depth exceeded 15×, the
improvement in F1 score was small. As the sequencing depth
increased from 30× to 50×, F1 scores were similar. Therefore, the
sequencing depth of 30× is recommended for germline variant
calling.

Previously, hard filter have been suggested to filter variants
on variant calling, which may have an influence on the accu-
racy of calling [7]. We also evaluated how the filtration process
impacted on variant calling results. After filtering the SNPs using
hard filter, the precision value increased from 0.9979 to 0.9991,
the recall value decreased from 0.9985 to 0.9866, and the F1 score
was slightly decreased. Similar results were obtained in InDel
filtering (see Supplementary Figure S3A and B available online at
https://academic.oup.com/bib). In addition, adjustment parame-
ters of emit_conf and call_conf from 30 to 10, the precision value
was also decreased while the recall value was increased, with
unchanged F1 scores of SNPs and InDels (see Supplementary
Figure S4A and B available online at https://academic.oup.com/
bib). We also assessed the effect of BQSR on germline variant
calling, and the results showed that BQSR had little effect on the
F1 score (see Supplementary Figure S5A and B available online
at https://academic.oup.com/bib).

Evaluation of germline variants from TGS

DNAseq mode of Sentieon, HaplotyperCaller mode of GATK,
and PACBIO mode of DeepVariant were used to detect SNP and
InDel from TGS data (Figure 3, see Supplementary Table S3 avail-
able online at https://academic.oup.com/bib). SNP calling results
showed that F1 scores of the three software were all above 0.99,
and the difference between the three software was marginal,
which was consistent with a previous study [25]. However, InDel
calling results were significantly different among the three soft-
ware. The F1 scores of DeepVariant were the highest on all three
datasets (0.9902, 0.9927, 0.9924 for TGS001, TGS002 and TGS005),
followed by DNAseq mode of Sentieon (0.9433, 0.9390, 0.9393),
whereas that of HaplotypeCaller from GATK (V4.0.7) were only
0.8437, 0.8223 and 0.8078, illustrating accurate and consistent
performance of PACBIO DeepVariant in detecting germline vari-
ants on PacBio data. After filtering the SNPs using hard filter,
the F1 score slightly increased (0.9979–0.9982); however, the F1
score of InDels significantly increased from 0.8437 to 0.9512 after
filtering with hard filter (see Supplementary Figure S3C and D
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Figure 1. A schematic diagram of variant calling. The FASTQ data were aligned with the human reference genome (hs37d5) using the BWA-MEM algorithm. The BAM

file from NGS data was processed followed these steps: mark duplication, InDel realignment and BQSR. And then germline and somatic variants were detected by

different variant callers. The BAM file from TGS data was processed to detect germline variant by different variant callers. The sensitivity and specificity of each caller

were evaluated using RTG tools. Finally, the detected variants the NGS and TGS data were compared.

available online at https://academic.oup.com/bib), suggesting its
importance in InDel identification from TGS data.

Comparison of germline variant calling results between
NGS and TGS data

Having demonstrated the consistent performance of DeepVari-
ant on both NGS and TGS datasets, we next sought to compare
the SNP and InDel loci of NGS and TGS data by DeepVariant. We
found that the TGS data could obtain more variations than that
of the NGS data for all three samples (Table 3). While the number
of SNPs was 3 815 558 in NGS data, the number of SNPs was
3 898 442 on average in TGS data, yielding around 2.13% more
than NGS. The number of InDels was 901 477 on average in TGS
data, yielding around 3.89% more than that of NGS (866 423).

We further evaluated the differences of SNPs and InDels from
the NGS and TGS datasets. We divided the genome into the GIAB
high_conf region, the GIAB filtered region and the outside GIAB
region (Method). It showed that more SNP and InDel loci could
be detected in TGS data in all three regions (Table 3). In the
high_conf region, the average number of SNPs was 3 101 630 in
the TGS data, while the average number of SNPs was 3 098 137
in the NGS data, 0.11% more SNP loci could be detected in TGS
data than that of in NGS data; however, the average number of
SNPs in TP loci in TGS and NGS data was 3 097 639 and 3 096 786,
respectively, an increase of only 0.03%. In InDels calling, 0.05%
more InDel loci could be detected in TGS data (443 559) than that
of in NGS data (443 344); however, the average number of InDels
in TP loci in TGS data (440 313) decreased by 0.05% compared
with the NGS data (440 509). In the GIAB_filter region, 12.66%
more SNP loci could be detected in TGS data (679 042) than that
of in NGS data (593 102), and 8.23% more InDel loci could be
detected in TGS data (419 806) than that of in NGS data (385 276).
In the outside region, 19.29% more SNP loci could be detected in
TGS data (122 584) than that of in NGS data (98 938), and 28.74%

more InDel loci could be detected in TGS data (36 715) than that
of in NGS data (26 162) (Table 3).

We also divided the genome into different regions based on
different GC contents. It also showed that the average number
of SNP and InDel loci in high-GC-content and low-GC-content
regions were higher in TGS data (Figure 4A and B). Although
the number of variations detected in each sample was different,
resulting in a larger SD, the overall trend was consistent across
all samples. In the low-GC-content region (less than 20%), the
average number of SNPs in TGS data (37 295) increased by 11.70%
compared with the NGS data (33 388), and the average number
of InDels in TGS data (28 649) increased by 8.82% compared
with the NGS data (26 326). In the high-GC-content region (more
than 60%), the average number of SNPs in TGS data (293 017)
increased by 7.95% compared with the NGS data (271 432), and
the average number of InDels in TGS data (73 219) increased by
18.45% compared with the NGS data (61 812).

In the highly repetitive region, the number of SNP and InDel
was higher in TGS data, too (Figure 4C and D). In the dup_all
region, the average number of SNPs in TGS data (300 425)
increased by 21.79% compared with the NGS data (246 673), and
the average number of InDels in TGS data (54 491) increased by
30.80% compared with the NGS data (41 659). With the increase
in duplication rate, the number of SNP and InDel loci in TGS
data increased more than that of in NGS data. In the dup99
region, 43.04% more SNP loci and 80.95% more InDel loci could be
detected in TGS data than that of in NGS data. In the dup_gt10k
region, 25.86% more SNP loci and 35.81% more InDel loci could
be detected in TGS data than that of in NGS data.

The results found that specific SNP and InDel loci were
detected only in TGS data. In order to check the reliability
of SNP and InDel loci from TGS, we visualized 60 randomly
selected loci using integrative genomics viewer (IGV). The
visualization results showed that all the loci detected from TGS
data were supported by more than five reads by IGV inspection
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Figure 2. Precision-recall curves for germline variant calling on NGS datasets. ‘WGS_DV’ is the DeepVariant v0.8 variant caller with WGS mode; ‘DNAscope_S’ is Sentieon

DNAscope variant caller; ‘DNAseq_S’ is Sentieon DNAseq variant caller; ‘HC_GATK’ is GATK HaplotypeCaller variant caller. ‘X’ marks the maximum F1-score for each

caller. (A–F) SNPs and InDels in datasets NGS001, NGS002 and NGS005.

Table 3. Variation detection results using DeepVariant in different datasets and regions

Type Data PASSd GIAB_highconfe TPf GIAB_filterg Outsideh

SNP NGSa 3 815 558
(±19 386)

3 098 136 (±91.906) 3 096 786 (±93 320) 593 102 (±90 456) 98 937 (±93 318)

TGSb 3 898 442 ± 17 873 3 101 630 (±95 163) 3 097 639 (±94 065) 679 042 (±66 886) 122 583 (±87 689)
Ratio (%)c 2.13 0.11 0.03 12.66 19.29

InDel NGSa 866 423 ± 21 372 443 344 (±48 325) 440 509 (±46 578) 385 276 (±45 259) 26 162 (±19 373)
TGSb 901 476 ± 1468 443 559 (±48 148) 440 313 (±47 702) 419 806 (±27 181) 36 715 (±23 764)
Ratio (%)c 3.89 0.05 −0.04 8.23 28.74

aNGS denotes the average number of NGS001, NGS002 and NGS005.
bTGS denotes the average number of TGS001, TGS002 and TGS005.
cRatio (%) = (TGS – NGS)/NGS∗100%.
dPASS denotes the site number of PASS in the FILTER column in the VCF file.
eGIAB_highconf denotes PASS in the GIAB highconf region.
fTP denotes PASS in GIAB_highconf region consistent with the true set.
gGIAB_filter denotes PASS in the GIAB_filter region.
hOutside denotes PASS outside the GIAB_highconf and GIAB_filter region.
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Figure 3. Precision-recall curves for germline variant calling on TGS datasets. ‘PACBIO_DV’ is the DeepVariant v0.8 variant caller with PACBIO mode; ‘DNAseq_S’ is

Sentieon DNAseq variant caller; ‘HG_GATK’ is GATK HaplotypeCaller variant caller. ‘X’ marks the maximum F1-score for each caller. (A–F) SNPs and InDels in datasets

TGS001, TGS002 and TGS005.

(see Supplementary Table S7 available online at https://academi
c.oup.com/bib), confirming reliability of variants detected from
TGS datasets but missed by NGS (see Supplementary Figure S6
available online at https://academic.oup.com/bib).

Evaluation of somatic variants

To evaluate the effect of different tumor sample purities on
somatic variant calling, we prepared four different in-silico mix-
ture data, with 10, 20, 40 and 60% mixed ratios respectively
(Material and methods). As expected, somatic variant calling
from tumor sample with 20% tumor purities got a higher F1 score
than 10% sample for all the callers. With the increase in tumor
sample purity, the precision value did not change much, while
the recall value increased considerably. F1 score of SNP calling
significantly increased when the sample purity was increased
from 10 to 20%, while the increase of F1 score was marginal
when the sample purity was increased from 20 to 60%. For

InDel calling, F1 score significantly increased when the sample
purity was increased from 10 to 40%, while F1 scores lightly
increased from 40 to 60% of tumor sample purities (Figure 5 and
see Supplementary Table S4 available online at https://academi
c.oup.com/bib). All callers except TNseq showed high F1 score
of SNPs when the tumor sample purity was 40 or 60%. When the
sample purity was 20%, TNscope and Mutect2 had the highest F1
score (0.9799 and 0.9777, respectively), followed by NeuSomatic
(0.9294). The other callers did not perform well. For InDel calling,
when the sample purity was 40%, Mutect2 had the highest F1
score (0.9205), followed by TNscope (0.8545), and the other callers
did not perform well (Figure 5 and see Supplementary Table S4
available online at https://academic.oup.com/bib).

We further studied the effect of BQSR on somatic variant
calling. SNP calling was carried out on the data before and after
BQSR, and the results showed that BQSR had little effect on F1
score (see Supplementary Figure S5C and D and Supplementary
Table S5 available online at https://academic.oup.com/bib).
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Figure 4. Comparison of the average number of variations in different GC content genomic regions and repetitive genomic regions in NGS and TGS data. The left axis

(A and B) represents differences in the number of variations between TGS and NGS data; the left axis (C and D) represents the number of variations in TGS and NGS

data, and the right axis (A–D) represents the proportional increase in the number of variations (TGS versus NGS data). NGS denotes the average number of NGS001,

NGS002 and NGS005; TGS denotes the average number of TGS001, TGS002 and TGS005; Dup95 means repetitive regions in which duplication rate was more than 95%;

Dup99 means repetitive regions in which duplication rate was more than 99%; Dup_all means all repetitive regions; Dup_gt10k means repetitive regions greater than

10 kb. (A and B) The difference values of SNPs and InDels between TGS and NGS in different GC contentgenomic regions. (C and D) The number of SNPs and InDels in

different repetitive genomic regions for NGS and TGS data.

Evaluation of computational cost

Finally, the computational costs of different callers were com-
pared. Four CPUs and 40 Gb of memory were allocated, and the
computational costs of each caller were shown in Figure 6A and
B. The computational resource consumption of Sentieon was
minimal, and the running time was also the shortest among all
callers. DeepVariant consumed more computational costs than
GATK in TGS data, more efficient in NGS data.

In somatic variant calling, four CPUs were allocated to each
caller, but the peak memory usage of each caller was varied,
which was shown in Figure 6C and D and see Supplementary
Table S6 available online at https://academic.oup.com/bib. CPU
core hours of TNscope from Sentieon were the least among all
callers, followed by Strelka2 and TNseq from Sentieon. In con-
trast, GATK and VarScan2 consumed the most CPU core hours
(see Supplementary Table S6 available online at https://academi
c.oup.com/bib).

Discussion
In this study, we evaluated different variant callers for germline
and somatic variant calling using NGS and TGS data. For
germline variant calling on NGS data, F1 scores of Sentieon,
GATK and DeepVariant were all above 0.99 with 30× coverage,
indicating that researchers could obtain highly accurate and
sensitive germline variant calling results using all three callers
on NGS data. This result was consistent with a previous study
[10]. F1 scores changed significantly with different sequencing
depths, and the depth of 30× was recommended for a balance

between cost and accuracy. For germline variant calling on TGS,
DeepVariant had the highest F1 score (SNPs and InDels) of the
three callers in TGS data. The possible reason is that DeepVariant
uses a deep learning model, which does not assume any specific
distribution, so it works also efficiently on TGS data. In contrast,
GATK and Senteion used the model that was designed for NGS
data, so they did not work well on TGS data.

We also compared germline variant calling on both NGS and
TGS data. The number of SNP and InDel in TGS data was higher
in high-GC-content regions and low-GC-content regions than in
NGS data, which showed that single-molecule sequencing with-
out PCR amplification could better solve the problem of GC bias.
Similar results have been achieved in highly repetitive regions,
indicating that the long reads of TGS have more advantages for
variant calling in highly repetitive regions. At the same time, we
also found that some unidentified variation sites in GIAB were
detected in TGS data, indicating that some sites in the true set
of GIAB need to be modified.

Somatic variant calling of the in-silico mixture data with 10%
tumor cells showed that while the precision score could be above
0.99, the recall value was only about 0.5, with F1 scores were
below 0.9. This indicated that a portion of somatic variant loci
were not detected because of insufficient coverage data when
the mix proportion of tumor cells was low (10%). Therefore, the
recall value of the loci should be improved by increasing the
sequencing depth in the case of low tumor purity. Indeed, F1
scores of SNP calling using Mutect2 and TNscope increased to
0.97 in 20% tumor purity sample. With the increase of tumor
purity to 40 and 60%, all callers except TNseq showed high F1
score of SNPs. For InDel calling, Mutect2 and TNscope had the
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Figure 5. Precision-recall curves for somatic variant calling NGS datasets with different mixed tumor ratios. ‘Mutect2_GATK’ is the GATK Mutect2 variant caller;

‘TNscope_S’ is Sentieon TNscope variant caller; ‘TNseq_S’ is Sentieon TNseq variant caller; ‘NeuSomatic’ is NeuSomatic variant caller; ‘Strelka2’ is Strelka2 variant

caller; ‘VarScan2’ is VarScan2 variant caller. ‘X’ marks the maximum F1-score for each caller. (A and B) SNPs and InDels in dataset MIX010. (C and D) SNPs and InDels

in dataset MIX020. (E and F) SNPs and InDels in dataset MIX040. (G and H) SNPs and InDels in dataset MIX060.

highest F1 score when the sample purity was 20%, while Mutect2
and VarScan2 had the highest F1 score when the sample purity
was 40 and 60%. Therefore, the higher tumor sample purity, the
better the accuracy of SNP and InDel calling.

We also compared the computational resource consumption
and time cost of all the callers. As an acceleration software, Sen-
tieon reduced computing resource consumption and shortened
the computation time without compromising the accuracy of
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Figure 6. Computational costs of different callers. (A and B) CPU core hours of different callers for germline variant calling using NGS data and TGS data. Jobs were run

on node with 4 CPUs and 40 Gb of memory. (C) CPU core hours of different callers for somatic variant calling using simulated NGS data. (D) Peak memory of different

callers for somatic variant calling using simulated NGS data.

the calling. Therefore, Sentieon is a choice if the speed is an
important factor to be considered and the cost of the software
is affordable. Otherwise, both DeepVairant and GATK are alter-
natives without decreasing accuracy compared to Sentieon. The
result of TGS showed that Sentieon has the minimum resources
consumption, while DeepVariant has the highest accuracy, and
researchers can choose a caller based on actual needs in TGS
data analysis.

To sum, by systematically evaluating performance of differ-
ent callers, our study suggested that careful selection of callers,
analysis parameters and sequencing platforms is required for
reliable variant calling under different scenarios.

Key Points
• We systematically evaluate four germline variant and

six somatic variant callers on NGS datasets and three
germline variant callers on TGS datasets.

• Four germline variant callers have comparable perfor-
mance on NGS datasets, where 30× coverage of WGS
data is recommended for a balance of accuracy and
cost.

• Three germline variant callers have similar perfor-
mance on TGS datasets for SNP calling while Deep-
Variant outperformed the others for InDel calling.
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More variants can be detected on TGS than NGS,
particularly in complex and repetitive regions.

• TNscope in Sentieon and Mutect2 in GATK outper-
formed the other somatic variant callers. The higher
tumor sample purity, the better the accuracy of SNP
and InDel calling.

• Careful selection of a tool and parameters is required
for accurate calling of SNPs and InDels under different
scenarios.

Supplementary data

Supplementary data are available online at https://academi
c.oup.com/bib.
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